Decision-making trends in quality management: a literature review about Industry 4.0
Lucas Schmidt Goecks; Alex Almeida dos Santos; André Luis Korzenowski
Abstract
Keywords
References
Almada-Lobo, F. (2016). The industry 4.0 revolution and the future of manufacturing execution systems (MES).
D’Emilia, G., Gaspari, A., & Galar, D. P. (2018). Improvement of measurement contribution for asset characterization in complex engineering systems by an iterative methodology.
Ding, B. (2018). Pharma industry 4.0: Literature review and research opportunities in sustainable pharmaceutical supply chains.
Gunasekaran, A., Subramanian, N., & Ngai, W. T. E. (2019). Quality management in the 21st century enterprises: Research pathway towards industry 4.0.
Irani, Z., Sharif, A. M., Lee, H., Aktas, E., Topaloğlu, Z., van’t Wout, T., & Huda, S. (2018). Managing food security through food waste and loss: small data to big data.
Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives.
Kampker, A., Heimes, H., Bührer, U., Lienemann, C., & Krotil, S. (2018). Enabling data analytics in large scale manufacturing.
Kozjek, D., Vrabič, R., Rihtaršič, B., & Butala, P. (2018). Big data analytics for operations management in engineer-to-order manufacturing.
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0.
Li, L. (2018). China’s manufacturing locus in 2025: With a comparison of “made-in-china 2025” and “industry 4.0”.
Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2015). A review of industrial wireless networks in the context of industry 4.0.
Lin, D., Lee, C., Lau, H., & Yang, Y. (2018). Strategic response to industry 4.0: an empirical investigation on the Chinese automotive industry.
Melnyk, S. A., Flynn, B. B., & Awaysheh, A. (2018). The best of times and the worst of times: empirical operations and supply chain management research.
Miller, W. J., Duesing, R. J., Lowery, C. M., & Sumner, A. T. (2018). The quality movement from six perspectives.
Müller, J. M., Buliga, O., & Voigt, K. I. (2018). Fortune favors the prepared: how SMEs approach business model innovations in industry 4.0.
Nascimento, D. L. M., Alencastro, V., Quelhas, O. L. G., Caiado, R. G. G., Garza-Reyes, J. A., Rocha-Lona, L., & Tortorella, G. (2019). Exploring industry 4.0 technologies to enable circular economy practices in a manufacturing context.
Ngo, Q. H., & Schmitt, R. H. (2016). A data-based approach for quality regulation.
Para, J., Del Ser, J., Nebro, A. J., Zurutuza, U., & Herrera, F. (2019). Analyze, sense, preprocess, predict, implement, and deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0.
Park, S. H. (1995). A new method of analysis for parameter design in quality engineering.
Raut, R. D., Mangla, S. K., Narwane, V. S., Gardas, B. B., Priyadarshinee, P., & Narkhede, B. E. (2019). Linking big data analytics and operational sustainability practices for sustainable business management.
Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., & Almeida, C. M. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: a framework, challenges and future research directions.
Rossit, D.A., Tohmé, F. and Frutos, M. A data-driven scheduling approach to smart manufacturing.
Sanders, A., Elangeswaran, C., & Wulfsberg, J. (2016). Industry 4.0 implies lean manufacturing: research activities in industry 4.0 function as enablers for lean manufacturing.
Telukdarie, A., Buhulaiga, E., Bag, S., Gupta, S., & Luo, Z. (2018). Industry 4.0 implementation for multinationals.
Tsai, W. H., & Lai, S. Y. (2018). Green production planning and control model with ABC under industry 4.0 for the paper industry.
Tsai, W. H., Chu, P. Y., & Lee, H. L. (2019a). Green activity-based costing production planning and scenario analysis for the aluminum-alloy wheel industry under industry 4.0.
Tsai, W.-H., Lan, S. H., & Huang, C. T. (2019b). Activity-based standard costing product-mix decision in the future digital era: green recycling steel-scrap material for steel industry.
Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Shuib, L., Ahani, A., & Ibrahim, O. (2018). Influence of big data adoption on manufacturing companies’ performance: an integrated DEMATEL-ANFIS approach.