Production
https://prod.org.br/article/doi/10.1590/0103-6513.20190026
Production
Thematic Section - Operations Management & Social Good

Hierarchical Facility Location Model for allocating cancer treatment units in interior of Rio de Janeiro

Isabella Fischer Guindani Vieira; Matheus Ferreira de Barros; Allan Cormack

Downloads: 0
Views: 904

Abstract

Abstract: Paper aims: This work aims at proposing a mathematical model for allocation of oncological treatment units of SUS.

Originality: A model of the same architecture was not found in the literature for the delimited problem.

Research method: The mathematical models of location in the literature were reviewed and based the choice by the two-level hierarchical pq-median model with additional constraints of maximum distance and vertices eligibility, which was implemented in the CPLEX optimization software.

Main findings: Satisfactory results with homogeneous networks, centralized facilities in their service area and shorter distance traveled by users indicate the efficiency of the model in determining the optimum location given the number of facilities to be allocated.

Implications for theory and practice: The model proved to be an efficient tool to assist health managers in their decision-making about the network of facilities, not just oncological, but of any nature and many others public sectors.

Keywords

Facility location problems, Integer programming, Oncology

References

Ahmadi-Javid, A., Seyedi, P., & Syam, S. S. (2017). A survey of healthcare facility location. Computers & Operations Research, 79, 223-263. http://dx.doi.org/10.1016/j.cor.2016.05.018.

American Cancer Society. (2018). Text alternative for rising global cancer epidemic. Retrieved in 2019, March 31, from https://www.cancer.org/research/infographics-gallery/rising-global-cancer-epidemic/rising-global-cancer-epidemic-text-alternative.html

Arenales, M. (2007). Pesquisa operacional. Rio de Janeiro: Elsevier.

Ballou, R. H. (2001). Gerenciamento da cadeia de suprimentos: planejamento, organização e logística empresarial (4. ed.). Porto Alegre: Bookman.

Belfiore, P., & Fávero, L. P. (2013). Pesquisa operacional para cursos de Engenharia. Rio de Janeiro: Elsevier.

Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 485-498. http://dx.doi.org/10.1016/j.ijdrr.2017.01.017.

Brasil. (1988, Outubro 5). Constituição da República Federativa do Brasil de 1988. Diário Oficial da República Federativa do Brasil.

Brasil, Ministério da Saúde. (2014). Protocolos clínicos e diretrizes terapêuticas em Oncologia. Brasília: Secretaria de Atenção à Saúde.

Daskin, M. (1995). Network and discrete location: models, algorithms and applications. New York: John Wiley and Sons Inc. http://dx.doi.org/10.1002/9781118032343.

Daskin, M., & Dean, L. (2004). Location of health care facilities. In F. Sainfort, M. Brandeau & W. Pierskalla (Eds.), Handbook of OR/MS in health care: a handbook of methods and applications (pp. 43-76). Norwell: Kluwer Academic Publishing.

Drezner, Z., & Hamacher, H. W. (2002). Facility location: applications and theory. New York: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-56082-8.

Farahani, R., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: models, classifications, techniques, and applications. Computers & Industrial Engineering, 68, 104-117. http://dx.doi.org/10.1016/j.cie.2013.12.005.

Ford, M., & Mitchell, M. (2000). Epidemiologia do câncer. In K. L. Boyer (Ed.), Oncologia na clínica geral (pp. 3-20). Rio de Janeiro: Guanabara.

Galvão, R., Espejo, L., & Boffey, B. (2002). A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro. European Journal of Operational Research, 138(3), 495-517. http://dx.doi.org/10.1016/S0377-2217(01)00172-2.

Instituto Brasileiro de Geografia e Estatística – IBGE. (2018, Abril 30). Population Estimates. Retrieved in 2019, March 31, from https://www.ibge.gov.br/estatisticas-novoportal/sociais/populacao/9103-estimativas-de-populacao.html?=&t=o-que-e

Instituto Nacional de Câncer José Alencar Gomes da Silva – INCA. (2017). Estimativa 2018: incidência de câncer no Brasil. Rio de Janeiro: Coordenação de Prevenção e Vigilância – INCA.

Instituto Nacional de Câncer José Alencar Gomes da Silva – INCA. (2018a, June 28). Integrador RHC. Retrieved in 2019, March 31, from https://irhc.inca.gov.br/RHCNet/visualizaTabNetExterno.action

Instituto Nacional de Câncer José Alencar Gomes da Silva – INCA. (2018b, June 27). Registros de câncer de base populacional. Retrieved in 2019, March 31, from http://www2.inca.gov.br/wps/wcm/connect/estatisticas/site/home/rcbp/

Leiras, A., González-Calderón, C. A., Brito, I., Jr., Villa, S., & Yoshizaki, H. (Eds.). (2019). Operations Management for Social Good: 2018 POMS International Conference in Rio. USA: Springer.

Lisboa, L. (2014). Tratamento de radioterapia em pacientes oncológicos. Vitória: Faculdade Católica Salesiana do Espírito Santo.

Narula, S. (1986). Minisum hierarchical location-allocation problems on a network: a survey. Annals of Operations Research, 6(8), 257-272. http://dx.doi.org/10.1007/BF02023745.

Ortiz-Astorquiza, C., Contreras, I., & Laporte, G. (2018). Multi-level facility location problems. European Journal of Operational Research, 267(3), 791-805. http://dx.doi.org/10.1016/j.ejor.2017.10.019.

Ruth, R. J. (1981). A mixed integer programming model for regional planning of a hospital patient service. Management Science, 27(5), 15261537. http://dx.doi.org/10.1287/mnsc.27.5.521.

Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373. http://dx.doi.org/10.1287/opre.19.6.1363.
 

5db99fe20e8825b355aa50ad production Articles
Links & Downloads

Production

Share this page
Page Sections