A three-stage stochastic optimization model for the Brazilian biodiesel supply chain

Senna, Pedro; Pinha, Denis; Ahluwalia, Rashpal; Guimarães, Julio Cesar; Severo, Eliana; Reis, Augusto

Downloads: 1
Views: 751


The Brazilian program for biodiesel use highlights the production of biodiesel from castor seeds. Biodiesel is a non-polluting energy source that has the potential to promote prosperity by creating jobs in poor regions of Brazil. However, the infrastructure, logistics, and proper facilities are lacking. A variety of approaches to optimizing the biodiesel supply chain have been proposed. The goal is to minimize the grain storage and transportation costs. This paper presents a comparison between a two-stage model and a multistage (three-stage) stochastic model to optimize the biodiesel supply chain. The comparison between these formulations shows that the flexibility gain provided by the multistage model results in a lower total logistic cost. The optimum for the three-stage model was 7,700,019 (BRL), compared to 8,628,002 (BRL) for the two-stage model, representing a savings of 927,983 (BRL). We highlight that this model offers a real solution for castor supply chain design (considering uncertainty) in the Brazilian semiarid region, which is a poorer region of the country, thus making cost reduction mandatory.


Biodiesel, Mixed Integer Linear programming, Stochastic optimization, Multistage program


Ahmed, S., King, A. J., & Parija, G. (2003). A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. Journal of Global Optimization, 26(1), 3-24.

Balibek, E., & Koksalan, M. (2012). A visual interactive approach for scenario-based stochastic multi-objective problems and an application. The Journal of the Operational Research Society, 63(12), 1773-1787.

Beraldi, P., Musmanno, R., & Triki, C. (2000). Solving stochastic linear programs with restricted recourse using interior point methods. Computational Optimization and Applications, 15(3), 215-234.

Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming (Springer Series in Operations Research). New York: Springer-Verlag.

Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., & Tonon, S. (2004). Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy, 29(12-15), 2195-2211.

Casey, M. S., & Sen, S. (2005). The scenario generation algorithm for multistage stochastic linear programming. Mathematics of Operations Research, 99(9), 999-999.

Companhia Nacional de Abastecimento. (2012). Brasília: CONAB. Retrieved in 23 September 2015, from

Dantzig, G. (1955). Linear programming under uncertainty. Management Science, 50(12), 1764-1769.

Date, P., Mamon, R., & Jalen, L. (2008). A new moment matching algorithm for sampling from partially specified symmetric distributions. Operations Research Letters, 36(6), 669-672.

Demirbas, M., & Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Conversion and Management, 47(15-16), 2371-2381.

Falasca, M., & Zobel, C. W. (2011). A two-stage procurement model for humanitarian relief supply chains. Journal of Humanitarian Logistics and Supply Chain Management., 1(2), 151-169.

Haas, M. J., Mcaloon, A. J., Yee, W. C., & Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97(4), 671-678. PMid:15935657.

Haneveld, W. K. K., & Vlerk, M. H. V. D. (1999). Stochastic integer programming: general models and algorithms. Annals of Operations Research, 85, 39-57.

Hoffman, J., & Schniederjans, M. (1994). A two-stage model for structuring global facility site selection decisions. International Journal of Operations & Production Management, 14(4), 79-96.

Hoyland, K., & Wallace, S. W. (2001). Generating Scenario Trees for Multistage decision problems. Management Science, 47(2), 295-307.

Jayaraman, V. (1998). An efcient heuristic procedure for practical-sized capacitated warehouse design and management. Decision Sciences Journal., 29(3), 729-745.

Kaut, M., & Wallace, S. W. (2007). Evaluation of scenario generation methods for stochastic programming. Pacific Journal of Optimization, 3(2), 257-271.

Keefer, D. L., & Bodily, S. E. (1983). Three-point approximations for continuous random variables. Management Science, 29(5), 595-609.

Leão, R. R. C. C., Hamacher, S., & Oliveira, F. (2011). Optimization of biodiesel supply chains based on small farmers: a case study in Brazil. Bioresource Technology, 102(19), 8958-8963. PMid:21816610.

Leduc, S., Natarajan, K., Dotzauer, E., Mccallum, I., & Obersteiner, M. (2009). Optimizing biodiesel production in India. Applied Energy, 86(1), S125-S131.

Lee, J. H. (2014). Energy supply planning and supply chain optimization under uncertainty. Journal of Process Control, 24(2), 323-331.

Messina, E. & Mitra, G. (1997). Modelling and analysis of multistage stochastic programming problems: a software environment. European Journal of Operations Research, 101, 343-359.

Nagar, L., & Jain, K. (2008). Supply chain planning using multi-stage stochastic programming. Supply Chain Management: An International Journal., 13(3), 251-256.

Oliveira, F., & Hamacher, S. (2012). A simulation-based approach to the optimization of the petroleum product supply chain under uncertainty: a case study in northern Brazil. Industrial & Engineering Chemistry Research, 51(11), 4279-4287.

Programa Nacional de Produção de Biodiesel. (2013). Retrieved in 23 September 2015, from

Ribas, G. P. (2008). Modelo de programação estocástica para o planejamento estratégico da cadeia integrada de petróleo (Dissertação de mestrado). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.

Riis, M., & Andersen, K. A. (2005). Applying the minimax criterion in stochastic recourse programs. European Journal of Operational Research, 165(3), 569-584.

Sahinidis, N. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers and Chemical Engineering, 28(6-7), 971-983.

Severo, E. A., Guimarães, J. C. F., Dorion, E. C. H., & Nodari, C. H. (2015). Cleaner production, environmental sustainability and organizational performance: an empirical study in the Brazilian metal-mechanic industry. Journal of Cleaner Production, 96, 118-125.

Sotoft, L. F., Rong, B., Christensen, K. V., & Norddahl, B. (2010). Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresource Technology, 101(14), 5266-5274. PMid:20171880.

Van Dyne, D. L., Weber, J. A., & Braschler, C. H. (1996). Macroeconomic effects of a community-based biodiesel production system. Bioresource Technology, 56(1), 1-6.

Xie, F., Huang, Y., & Eksioglu, S. (2014). Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresource Technology, 152, 15-23. PMid:24275021.

Zhang, M., Huang, J., & Zhu, J. (2012). Reliable facility location problem considering facility failure scenarios. Kybernetes, 41(10), 1440-1461.

Zhang, Y., Dube, M. A., Mclean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1-16. PMid:12676496.
5883a4707f8c9da00c8b4912 production Articles
Links & Downloads


Share this page
Page Sections