Production
https://prod.org.br/article/doi/10.1590/0103-6513.170081
Production
Research Article

Electric power load in Brazil: view on the long-term forecasting models

Larissa Resende; Murilo Soares; Pedro Ferreira

Downloads: 0
Views: 375

Abstract

Abstract: Paper aims: This paper aims to discuss how the energy load forecasts used by the System Operator and the main agents of the sector are made, and for what purposes, besides discuss the forecast deviations of the ONS’s and EPE’s models and their consequences and costs to the agents involved.

Originality: Fill a gap in the Brazilian literature when dealing with the Electric Power Load formally, and the consequences of forecast deviation used by the operator of system.

Research method: Simulations are carried out to estimate the cost of deviation, in order to assess the impact of the load forecast on the system.

Main findings: As a result, there is an urgent need to clarify forecasting methods and strategies; to avoid, by the sector agents, justifications that optimistic forecasts are necessary as security measures.

Implications for theory and practice: There are evidence that small improvements in forecasting models imply significant cost reductions.

Keywords

Electric power load, Forecast, Operations planning, Brazilian Interconnected Power System (SIN), Forecast deviation

References

Andrade, T. A., & Lobão, W. J. (1997). Elasticidade renda e preço da demanda residencial de energia elétrica no Brasil. Brasília: Instituto de Pesquisa Econômica Aplicada.

Arsenault, E., Bernard, J.-T., Carr, C., & Genest-Laplante, E. (1995). A total energy demand model of Québec: forecasting properties. Energy Economics , 17(2), 163-171. http://dx.doi.org/10.1016/0140-9883(94)00003-Y.

Barakat, E., & Al-Qasem, J. (1998). Methodology for weekly load forecasting. IEEE Transactions on Power Systems, 13(4), 1548-1555. http://dx.doi.org/10.1109/59.736304.

Bentzen, J., & Engsted, T. (1993). Short-and long-run elasticities in energy demand: a cointegration approach. Energy Economics, 15(1), 9-16. http://dx.doi.org/10.1016/0140-9883(93)90037-R.

Bernstein, M. A., & Griffin, J. M. (2006). Regional differences in the price-elasticity of demand for energy. Washington: U.S. Department of Energy. http://dx.doi.org/10.2172/877655.

Chern, W. S., & Just, R. E. (1982). Assessing the need for power: a regional econometric model. Energy Economics, 4(4), 232-239. http://dx.doi.org/10.1016/0140-9883(82)90003-2.

Dudek, G. (2016). Pattern-based local linear regression models for short-term load forecasting. Electric Power Systems Research, 130, 139-147. http://dx.doi.org/10.1016/j.epsr.2015.09.001.

Ediger, V., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in turkey. Energy Policy, 35(3), 1701-1708. http://dx.doi.org/10.1016/j.enpol.2006.05.009.

Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica, 55(2), 251-276. http://dx.doi.org/10.2307/1913236.

Empresa de Pesquisa Energética – EPE. (2015). Balanço Energético Nacional (BEN). Brasília.

Fei, S., Wang, M.-J., Miao, Y., Tu, J., & Liu, C. (2009). Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil. Energy Conversion and Management, 50(6), 1604-1609. http://dx.doi.org/10.1016/j.enconman.2009.02.004.

Ferreira, P. G. C., Oliveira, F. L. C., & Souza, R. C. (2015). The stochastic effects on the Brazilian electrical sector. Energy Economics, 49, 328-335. http://dx.doi.org/10.1016/j.eneco.2015.03.004.

Irffi, G., Castelar, I., Siqueira, M. L., & Linhares, F. C. (2009). Previsão da demanda por energia elétrica para classes de consumo na região nordeste, usando OLS dinâmico e mudança de regime. Economia Aplicada , 13(1), 69-98. http://dx.doi.org/10.1590/S1413-80502009000100004.

Kucukali, S., & Cokgor, S. (2007). Fuzzy logic model to predict hydraulic jump aeration efficiency. Proceedings of the Institution of Civil Engineers: Water Management , 160(4), 225-231. http://dx.doi.org/10.1680/wama.2007.160.4.225.

Lobão, W., & Ferreira, P. G. C. (2015). Modelagem da carga de energia elétrica no Brasil: uma proposta VAR-VEC via estimação da demanda . Rio de Janeiro: FGV.

Maceira, M. E. P., Marzano, L., Penna, D. D. J., Diniz, A., & Justino, T. (2015). Application of CVAR risk aversion approach in the expansion and operation planning and for setting the spot price in the Brazilian hydrothermal interconnected system. International Journal of Electrical Power & Energy Systems, 72, 126-135. http://dx.doi.org/10.1016/j.ijepes.2015.02.025.

Mattos, L. B., & Lima, J. E. (2005). Demanda residencial de energia elétrica em Minas Gerais: 1970-2002. Nova Economia, 15(3), 31-52. http://dx.doi.org/10.1590/S0103-63512005000300002.

Operador Nacional do Sistema Elétrico – ONS. (2015). Benefícios da implantação do horário de verão 2014/2015. Brasília.

Pai, P.-F., & Lin, C.-S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33(6), 497-505. http://dx.doi.org/10.1016/j.omega.2004.07.024.

Philpott, A., & Matos, V. (2012). Dynamic sampling algorithms for multistage stochastic programs with risk aversion. European Journal of Operational Research , 218(2), 470-483. http://dx.doi.org/10.1016/j.ejor.2011.10.056.

Ranaweera, D., Hubele, N., & Karady, G. (1996). Fuzzy logic for short term load forecasting. International Journal of Electrical Power & Energy Systems, 18(4), 215-222. http://dx.doi.org/10.1016/0142-0615(95)00060-7.

Rowland, C. S., Mjelde, J. W., & Dharmasena, S. (2017). Policy implications of considering pre-commitments in us aggregate energy demand system. Energy Policy , 102, 406-413. http://dx.doi.org/10.1016/j.enpol.2016.12.041.

Schmidt, C. A. J., & Lima, M. A. (2004). A demanda por energia elétrica no Brasil. Revista Brasileira de Economia, 58(1), 68-98. http://dx.doi.org/10.1590/S0034-71402004000100004.

Shapiro, A. (2011). Analysis of stochastic dual dynamic programming method. European Journal of Operational Research, 209(1), 63-72. http://dx.doi.org/10.1016/j.ejor.2010.08.007.

Shapiro, A., Tekaya, W., Costa, J. P., & Soares, M. P. (2013a). Risk neutral and risk averse Stochastic Dual Dynamic Programming method. European Journal of Operational Research , 224(2), 375-391. http://dx.doi.org/10.1016/j.ejor.2012.08.022.

Shapiro, A., Tekaya, W., Soares, M. P., & Costa, J. P. (2013b). Worst-case expectation approach to optimization under uncertainty. Operations Research, 61(6), 1435-1449. http://dx.doi.org/10.1287/opre.2013.1229.

Siqueira, M. L., Cordeiro, J. R. H., & Castelar, I. (2006). A demanda por energia elétrica no nordeste brasileiro após o racionamento de 2001-2002: previsões de longo prazo. Pesquisa e Planejamento Economico, 36(1), 137-178.

Torrini, F. C., Souza, R. C., Oliveira, F. L. C., & Pessanha, J. F. M. (2016). Long-term electricity consumption forecast in Brazil: A fuzzy logic approach. Socio-Economic Planning Sciences, 54, 18-27. http://dx.doi.org/10.1016/j.seps.2015.12.002.

Viana, G., & Silva, A. L. M. (2014). Um modelo para projeções para demanda por energia elétrica, 2009-2017 para o setor residencial no Brasil. Revista Brasileira de Energia, 20, 107-126.

Westley, G. D. (1984). Electricity demand in a developing country. The Review of Economics and Statistics, 66(3), 459-467. http://dx.doi.org/10.2307/1925002.

Westley, G. D. (1989). Commercial electricity demand in a Central American economy. Applied Economics, 21(1), 1-17. http://dx.doi.org/10.1080/772284227.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14(1), 35-62. http://dx.doi.org/10.1016/S0169-2070(97)00044-7.

Zjavka, L., & Snášel, V. (2016). Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks. Electric Power Systems Research, 137, 113-123. http://dx.doi.org/10.1016/j.epsr.2016.04.003.
 

5bbb5a560e88254d6ed262d4 production Articles
Links & Downloads

Production

Share this page
Page Sections