Production
https://prod.org.br/article/doi/10.1590/0103-6513.138013
Production
Article

Dimensionamento e alocação dinâmica de veículos no transporte rodoviário de cargas completas entre terminais

Sizing and dynamic allocation of vehicles for road transportation of full truckloads between terminals

Vasco, Rejane Arinos; Morabito, Reinaldo

Downloads: 0
Views: 929

Resumo

Este artigo trata do Problema da Alocação Dinâmica de Veículos (PADV) no transporte rodoviário de cargas completas entre terminais, incluindo o dimensionamento da frota adicional necessária para o atendimento de demandas em um horizonte de planejamento multi-períodos e finito. O PADV consiste em definir “movimentos” de uma frota de veículos que realiza viagens entre terminais geograficamente dispersos que interagem entre si. Estes movimentos podem ser: veículos carregados com carga completa, vazios para reposicionamento, ou mantidos em um terminal de um período para outro como provisão para o atendimento de demandas futuras. A ênfase é dada na caracterização do problema em situações reais, na modelagem matemática do problema por meio de programação linear inteira e na solução deste utilizando um pacote comercial de otimização. Os experimentos computacionais realizados indicam que essa abordagem pode ser útil para a solução de problemas encontrados no dia a dia de uma empresa transportadora de carga parcelada no Brasil.

Palavras-chave

Alocação dinâmica de veículos. Otimização linear inteira multiperíodo. Transporte rodoviário. Cargas completas de caminhões.

Abstract

This paper addresses the dynamic vehicle allocation problem (DVAP) involving the road transportation of full loads between terminals, including the determination of the number of additional vehicles required to meet the demand for transportation in a multi-period finite planning horizon. The DVAP consists of defining the “movements” of a fleet of vehicles that transport goods between terminals with a wide geographical distribution and interact among themselves. These movements may be of fully laden vehicles, unladen vehicles used for repositioning, or vehicles held at a terminal to meet future demands. Emphasis is given to the characterization of the problem in real situations, the mathematical modeling of the problem by means of integer linear programming and the use of operational research techniques in solving the problem. The computational experiments conducted indicate that this approach can be useful for the solution of problems encountered in everyday life of a LTL transportation company in Brazil.

Keywords

Dynamic vehicle allocation. Multi-period integer linear optimization. Freight transportation. Full truck loads.

References

Beaujon, G. J., & Turnquist, M. A. (1991). A model for fleet sizing and vehicle allocation. Transportation Science, 25(1), 19-45. http://dx.doi.org/10.1287/trsc.25.1.19.

Birge, J. R., & Louveaux, F. (1997) Introduction to stochastic programming (Springer Series in Operations Research and Financial Engineering, s. 1). Switzerland: Springer.

Bojovic, N. J. (2002). A general system theory approach to rail freight car fleet sizing. European Journal of Operational Research, 136(1), 136-172. http://dx.doi.org/10.1016/S0377-2217(01)00034-0.

Braklow, J. W., Graham, W. W., Hassler, S. M., Peck, K. E., & Powell, W. B. (1992). Interactive optimization improves service and performance for yellow freight system. Interfaces, 22(1), 147-172. http://dx.doi.org/10.1287/inte.22.1.147.

Dejax, P. J., & Crainic, T. G. (1987). A review of empty flows and fleet management models in freight transportation. Transportation Science, 21(4), 227-247. http://dx.doi.org/10.1287/trsc.21.4.227.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. Cambridge: The MIT Press. http://dx.doi.org/10.1007/b99492.

Fourer, R., Gay, D. M., & Kernighan, B. W. (2002). AMPL: a modeling language for mathematical programming. Pacific Grove: Duxbury Press.

Frantzeskakis, L. F., & Powell, W. B. (1990). A successive linear approximation procedure for stochastic, dynamic vehicle allocation problems. Transportation Science, 24(1), 40-57. http://dx.doi.org/10.1287/trsc.24.1.40.

Ghiani, G., Laporte, G., & Musmanno, R. (2003). Introduction to logistics systems planning and control (Wiley-Interscience series in systems and optimization). Hoboken: John Wiley & Sons. http://dx.doi.org/10.1002/0470014040.

Hall, R. W. (1999). Stochastic freight flow patterns: implications for fleet optimization. Transportation Research Part A, Policy and Practice, 33(6), 449-465. http://dx.doi.org/10.1016/S0965-8564(98)00063-9.

Hall, R. W., & Zhong, H. (2002). Decentralized inventory control policies for equipment management in a many-to-many network. Transportation Research Part A, Policy and Practice, 36(10), 849-865. http://dx.doi.org/10.1016/S0965-8564(01)00025-8.

Ilog. (2008). Ilog CPLEX 11.1.1: user’s manual. Florianópolis: Ilog.

Kirkpatrick, S., Gelatt Junior, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. http://dx.doi.org/10.1126/science.220.4598.671. PMid:17813860.

Oliveira, P. F., & Pizzolato, N. D. (2002). A eficiência da distribuição através da prática do crossdocking. In Anais do XXII Encontro Nacional de Engenharia de Produção, Curitiba.

Powell, W. B. (1986). A stochastic model of the dynamic vehicle allocation problem. Transportation Science, 20(1), 117-129. http://dx.doi.org/10.1287/trsc.20.2.117.

Powell, W. B. (1987). An operational planning model for the dynamic vehicle allocation problem with uncertain demands. Transportation Research Part B: Methodological, 21(3), 217-232. http://dx.doi.org/10.1016/0191-2615(87)90005-1.

Powell, W. B. (1988). A comparative review of alternative algorithms for the dynamic vehicle allocation problem. In B. L. Golden & A. Assad (Eds.), Vehicle routing: methods and studies (Studies in management science and systems, Vol. 16, pp. 249-291). Amsterdam: Elsevier Science Publisher.

Powell, W. B. (1996). A stochastic formulation of the dynamic assignment problem, with an application to truckload motor carrier. Transportation Science, 30(3), 195-219. http://dx.doi.org/10.1287/trsc.30.3.195.

Powell, W. B., & Carvalho, T. A. (1998a). Dynamic control of logistics queuing networks for large-scale fleet management. Transportation Science, 32(2), 90-109. http://dx.doi.org/10.1287/trsc.32.2.90.

Powell, W. B., & Carvalho, T. A. (1998b). Real-time optimization of containers and flatcars for intermodal operations. Transportation Science, 32(2), 110-126. http://dx.doi.org/10.1287/trsc.32.2.110.

Powell, W. B., Jaillet, P., & Odoni, A. R. (1995). Stochastic and dynamic networks and routing. In M. O. Ball, T. L. Magnanti, C. L. Monna & G. L. Nemhauser (Eds.), Handbooks in operations research and management science (Vol. 8, pp. 141-295). Amsterdam: Elsevier Science.

Powell, W. B., Sheffi, Y., & Thiriez, S. (1984). The dynamic vehicle allocation problem with uncertain demands. In 9th International Symposium on Transportation and Traffic Theory, Netherlands.

Sayarshad, H. R., & Ghoseiri, K. (2009). A simulated annealing approach for the multi-periodic rail-car fleet sizing problem. Computers & Operations Research, 36(6), 1789-1799. http://dx.doi.org/10.1016/j.cor.2008.05.004.

Sayarshad, H. R., & Tavakkoli-Moghaddam, R. (2010). Solving amulti periodic stochastic model of the rail-car fleet sizing by two-stage optimization formulation. Applied Mathematical Modelling, 34(5), 1164-1174. http://dx.doi.org/10.1016/j.apm.2009.08.004.

Vasco, R. A. (2012). Otimização na alocação dinâmica de veículos no transporterodoviário de cargas completas entre terminais (Tese de doutorado). Departamento de Engenharia de Produção, Universidade Federal de São Carlos, São Carlos.

Vasco, R. A., & Morabito, R. (2014). Otimização na alocação dinâmica de veículos no transporte rodoviário de cargas completas entre terminais. Gestão & Produção, 21(2), 271-284. http://dx.doi.org/10.1590/S0104-530X2014005000011.
5883a45f7f8c9da00c8b48ce production Articles
Links & Downloads

Production

Share this page
Page Sections