Detecção de mudança de nível em séries temporais não lineares usando Descritores de Hjorth

Detecting a level change in a nonlinear time series using Hjorth’s Descriptors

Amorim, Gabriela da Fonseca de; Balestrassi, Pedro Paulo; Paiva, Anderson Paulo de; Oliveira-Abans, Mariângela de

Downloads: 0
Views: 419


O propósito deste artigo é apresentar um método de detecção de mudança de nível na dinâmica de séries temporais não lineares que consiste no uso de um gráfico de Controle Multivariado T2 de Hotelling monitorando a variação de três descritores normalizados: os Descritores de Hjorth de atividade, mobilidade e complexidade. Esta abordagem foi aplicada em diferentes séries temporais não lineares criadas artificialmente e é ilustrada neste artigo por um exemplo detalhado. Também foi feito um estudo de caso com seis séries reais do consumo de energia elétrica no meio industrial, confirmando a eficácia do método.


Séries temporais não lineares. Descritores de Hjorth. Gráficos de Controle Multivariado T2 de Hotelling. Mudança de nível.


The purpose of this paper is to present a method for detecting the dynamic changes in a nonlinear time series that uses the Hotelling T2 multivariate control chart to monitor the variation in three normalized descriptors: Hjorth’s descriptors of activity, mobility and complexity. This approach was applied to different simulated nonlinear time series and is illustrated in this paper with a detailed example. A case study with six time series of short-term electricity load consumption was also used to confirm the method’s effectiveness.


Nonlinear time series. Hjorth’s Descriptors. Hotelling T2 control chart. Level change.


Angelus, A. (2001). Electricity price forecasting in deregulated markets. Electricity Journal, 14(3), 32-41.

Basseville, M., & Nikiforov, I. (2000). Detection of abrupt changes: theory and application. New Jersey: Prentice- Hall.

Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543.

Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: forecasting and control. San Francisco: Holden-Day.

Burrell, A., & Papantoni, T. (2000). Sequential algorithms for detecting changes in acting stochastic processes and on-line learning of their operational parameters. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain.

Cabrerizo, M., Ayala, M., Goryawala, M., Jayakar, P., & Adjouadi, M. (2012). A new parametric feature descriptor for the classification of epileptic and control EEG records in pediatric population. International Journal of Neural Systems, 22(2). PMid:23627587.

Castanie, F., & Denjean, F. (1992). Mean value jump detection using wavelet decomposition. In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Victoria, Canada.

Chen, R., & Tsay, R. S. (1993). Functional-coefficient autoregressive models. Journal of the American Statistical Association, 88(421), 298-308.

Gooijer, J. G. (1998). On threshold moving-average models. Journal of Time Series Analysis, 19(1), 1-18.

Granger, C. W. J., & Anderson, A. P. (1978). An introduction to bilinear time series models. Göttingen: Vandenhoeck & Ruprecht.

Granger, C. W. J., & Terasvirta, T. (1993). Modeling nonlinear economic relationship. New York: Oxford University Press.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357-384.

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306-310.

Inclan, C. (1993). Detection of multiple changes of variance using posterior odds. Journal of Business & Economic Statistics, 11(3), 289-300.

Inclan, C., & Tiao, G. (1994). Use of cumulative sums of squares for retrospective detection of changes of variance. Journal of the American Statistical Association, 89(427), 913-923.

Karathanassi, V., Iossifidis, C., & Rokos, D. (1996). Application of machine vision techniques in the quality control of pharmaceutical solutions. Computers in Industry, 32(2), 169-179.

Klöppelberg, C., & Mikosch, T. (1996). Gaussian limit fields for the integrated periodogram. The Annals of Applied Probability, 6(3), 969-991.

Lavielle, M., & Lebarbier, E. (2001). An application of MCMC methods for the multiple change-points problem. Signal Process, 81(1), 39-53.

Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE Transactions, 27(5), 800-810.

Macdougall, S., Nandi, A. K., & Chapman, R. (1998). Multiresolution and hybrid bayesian algorithms for automatic detection of change points. IEE Proceedings - Vision, Image and Signal, 145(4), 280-286.

Malladi, D. P., & Speyer, J. L. (1999). A generalized shiryayev sequential probability ratio test for change detection and isolation. IEEE Transactions on Automatic Control, 44(8), 1522-1534.

Mariani, S., Manfredini, E., Rosso, V., Mendez, M. O., Bianchi, A. M., Matteucci, M., Terzano, M. G., Cerutti, S., & Parrino, L. (2011). Characterization of a phases during the cyclic alternating pattern of sleep. Clinical Neurophysiology, 122(10), 2016-2024. PMid:21439902.

Morgenstern, V. M., Upadhyaya, B. R., & Benedetti, M. (1988). Signal anomaly detection using modified cusum method. In Proceedings of the 27th IEEE Conference on Decision and Control, Knoxville, Texas.

Mount, T. (2001). Market power and price volatility in restructured markets for electricity. Decision Support Systems, 30, 311-325.

Ombao, H., Heo, J., & Stoffer, D. (2004). Statistical analysis of seismic signals: an almost real-time approach, time series analysis and applications to geophysical systems (IMA Series 139). New York: Wiley.

Pai, PF., & Hong, W. C. (2005). Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management, 46, 2669-2688.

Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge: Cambridge University Press.

Priestley, M. B. (1980). State-dependent models: a general approach to nonlinear time series analysis. Journal of Time Series Analysis, 1, 47-71.

Ramirez-Beltran, N. D., & Montes, J. A. (1997). Neural networks for on-line parameter change detections in time series models. Computers & Industrial Engineering, 33, 337-340.

Souza, R. C. (1981). Metodologias para a análise e previsão de séries temporais univariadas e multivariadas. Revista de Econometria, 77, 105.

Statsoft, Inc. (2005). Statistica: version 7.1. Recuperado em 6 de fevereiro de 2013, de

Tong, H. (1978). On a threshold model. In C. H. Chen (Ed.), Pattern recognition and signal processing (pp. 575-586). Amsterdam: Sijhoff & Noordhoff.

Tsay, R. S. (2005). Analysis of financial time series. New Jersey: Wiley.

Ye, N. (2000). Confidence assessment of quality prediction from process measurement in sequential manufacturing processes. IEEE Transactions on Electronics Packaging Manufacturing, 23(3), 177-184.

Zhang, G. P., Patuwo, B. E., & Hu, M. Y. (2001). A simulation study of artificial neural networks for nonlinear time-series forecasting. Computers & Operations Research, 28, 381-396.
5883a4617f8c9da00c8b48d8 production Articles
Links & Downloads


Share this page
Page Sections