Impacto de la regla de decisión en el modelado de la difusión de innovaciones

Impact of the decision rule in innovation diffusion modeling

Cadavid, Lorena; Cardona, Carlos Jaime Franco

Downloads: 0
Views: 470


Este artículo analiza el impacto de la regla de decisión que representa el comportamiento de los individuos en la curva de difusión pronosticada por los modelos de difusión de innovaciones a nivel individual. Para ello, se hace uso de un modelo basado en agentes, en el cual la difusión ocurre dentro de una red tipo mundo pequeño, y se analiza el fenómeno usando 4 reglas de decisión diferentes: (1) una regla de umbrales con externalidades positivas, (2) una regla de umbrales con externalidades positivas y negativas, (3) una regla basada en el modelo de Bass y (4) una regla basada en la Teoría del Comportamiento Planeado. Los resultados obtenidos rechazan la hipótesis de igualdad entre las diferentes curvas de difusión. Se concluye que la regla de decisión tiene un impacto significativo en la curva de difusión pronosticada por los modelos de difusión a nivel individual.


Simulación. Difusión de innovaciones. Adopción de innovaciones. Modelado basado en agentes. Regla de decisión.


In this, paper we analyze the impact of the decision rule to represent the behavior of individuals in the diffusion curve predicted by models of innovation diffusion at the individual level. We use an agent-based model, in which diffusion takes place in a small-world network, and analyze the phenomenon using 4 different decision rules: (1) threshold decision rule with positive externalities, (2) threshold decision rule with positive and negative externalities, (3) decision rule based on the Bass model and (4) decision rule based on the Theory of Planned Behavior. The results reject the equality hypothesis among different diffusion curves, so we conclude the decision rule has a significant impact on the diffusion curve predicted by diffusion models at the individual level.


Simulation. Innovation diffusion. Adoption of innovations. Agent-based modeling. Decision rule.


Ajzen, I. (1985). From intentions to actions: a theory of planned behavior. In J. Kuhl & J. Beckemann (Eds.), Action control: from cognition to behavior (pp. 11-39). New York: Springer-Verlag.

Alkemade, F., & Castaldi, C. (2005). Strategies for the diffusion of innovations on social networks. Computational Economics, 25(1-2), 3-23.

Allen, B. (1982). Some stochastic processes of interdependent demand and technological diffusion of an innovation exhibiting externalities among adopters. International Economic Review, 23(3), 595-608.

Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254.

Barabási, A.-L. (1999a). Mean-field theory for scale-free random netowork. Physica A: Statistical Mechanics and its Applications, 272(1-2), 173-187.

Barabási, A.-L. (1999b). Emergence of scaling in random networks. Science, 286(5439), 509-512. PMid:10521342.

Bass, F. M. (1969). A new product gowth for model consumer durables. Management Science, 15(5), 215-227.

Berger, T. (2001). Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25(2-3), 245-260.

Buchanan, J. M. (1969). External diseconomies, corrective taxes, and market structure. The American Economic Review, 59(1), 174-177.

Chuttur, M. (2009). Overview of the technology acceptance model: origins, developments and future directions. Sprouts: Working Papers on Information Systems, 9(37), 1-23.

Gardner, M. (1970). Mathematical games: the fantastic combinations of John Conway’s new solitaire game “Life”. Scientific American, 223(4), 120-123.

Georgescu, S., & Okuda, H. (2008). A distributed multi-agent framework for simulating the diffusion of innovations. Journal of Power and Energy Systems, 2(6), 1320-1332.

Gilbert, N. (1997). A simulation of the structure of academic science. Sociological Research Online, 2(2), 1-17.

Goldenberg, J., Libai, B., Solomonc, S., Jand, N., & Stauffere, D. (2000). Marketing percolation. Physica A: Statistical Mechanics and its Applications, 284(1-4), 335-347.

Goldenberg, J., & Efroni, S. (2001). Using cellular automata modeling of the emergence of innovations. Technological Forecasting and Social Change, 68(3), 293-308.

Hale, J., Householder, B., & Green, K. (2002). The theory of reasoned action. In J. Dillard & M. Pfau (Eds.), The persuasion handbook: developments in theory and practice (pp. 865). Thousand Oaks: Sage Publications.

Hsu, C. L., & Lin, J. C. (2008). Acceptance of blog usage: the roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.

Katz, M. L., & Shapiro, C. (1986). Technology adoption in the presence of network externalities. The Journal of Political Economy, 94(4), 822-841.

Katz, M. L., & Shapiro, C. (1992). Product introduction with network externalities. The Journal of Industrial Economics, 40(1), 55-83.

Kemp, R., & Volpi, M. (2008). The diffusion of clean technologies: a review with suggestions for future diffusion analysis. Journal of Cleaner Production, 16(1), S14-S21.

Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183-230.

Macvaugh, J., & Schiavone, F. (2010). Limits to the diffusion of innovation: a literature review and integrative model. European Journal of Innovation Management, 13(2), 197-221.

Mahajan, V., Muller, E., & Bass, F. (1990). New product diffusion models in marketing: a review and directions for research. The Journal of Marketing, 54(1), 1-26.

Manson, S. M. (2006). Bounded rationality in agent- based models: experiments with evolutionary programs. International Journal of Geographical Information Science, 20(9), 991-1012.

Montalvo, C., & Kemp, R. (2008). Cleaner technology diffusion: case studies, modeling and policy. Journal of Cleaner Production, 16(1), S1-S6.

Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models: a critical review and research directions. International Journal of Research in Marketing, 27(2), 91-106.

Plackett, R. (1983). Karl Pearson and the chi-squared test. International Statistical Review, 51(1), 59-72.

Rahmandad, H., & Sterman, J. (2008). Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models. Management Science, 54(5), 998-1014.

Rao, K. U., & Kishore, V. V. N. (2010). A review of technology diffusion models with special reference to renewable energy technologies. Renewable and Sustainable Energy Reviews, 14(3), 1070-1078.

Rogers, E. M. (1983). Diffusion of innovations (Vol. 11, 3rd ed.). London: Collier Macmillan Publishers.

Rohlfs, J. (2001). Bandwagon effects in high-technology industries (Vol. 27). Cambridge: MIT Press.

Schelling, T. C. (1978). Micromotives and macrobehavior. New York: W. W. Norton & Company.

Varian, H. R. (1985). Price discrimination and social welfare. The American Economic Review, 75(4), 870-875.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.

Watts, D. J. (2000). Small worlds: the dynamics of networks between order and randomn. Mathematical Association of America, 107(7), 664-668.

Watts, D. J., & Strogatz, S. H. (1998). Models of the small world. Nature, 393, 440-442. PMid:9623998.

Zhang, T., Gensler, S., & Garcia, R. (2011). A study of the diffusion of alternative fuel vehicles: an agent-based modeling approach. Journal of Product Innovation Management, 28(2), 152-168.
5883a4607f8c9da00c8b48d4 production Articles
Links & Downloads


Share this page
Page Sections