Production
https://prod.org.br/article/doi/10.1590/0103-6513.001417
Production
Research Article

An optimisation approach for capacity planning: modelling insights and empirical findings from a tactical perspective

Carvalho, Andréa Nunes; Scavarda, Luiz Felipe; Oliveira, Fabricio

Downloads: 1
Views: 334

Abstract

The academic literature presents a research-practice gap on the application of decision support tools to address tactical planning problems in real-world organisations. This paper addresses this gap and extends a previous action research relative to an optimisation model applied for tactical capacity planning in an engineer-to-order industrial setting. The issues discussed herein raise new insights to better understand the practical results that can be achieved through the proposed model. The topics presented include the modelling of objectives, the representation of the production process and the costing approach, as well as findings regarding managerial decisions and the scope of action considered. These insights may inspire ideas to academics and practitioners when developing tools for capacity planning problems in similar contexts.

Keywords

Engineer-to-order, Aggregate production planning, Decision support system, Mathematical programming, Action research.

References

Alem, D., & Morabito, R. (2012). Production planning in furniture settings via robust optimization. Computers & Operations Research, 39(2), 139-150. http://dx.doi.org/10.1016/j.cor.2011.02.022.

Alfieri, A., Tolio, T., & Urgo, M. (2011). A project scheduling approach to production planning with feeding precedence relations. International Journal of Production Research, 49(4), 995-1020. http://dx.doi.org/10.1080/00207541003604844.

Alfieri, A., Tolio, T., & Urgo, M. (2012). A two-stage stochastic programming project scheduling approach to production planning. International Journal of Advanced Manufacturing Technology, 62(1-4), 279-290. http://dx.doi.org/10.1007/s00170-011-3794-4.

Artigues, C., Leus, R., & Nobibon, F. (2013). Robust optimization for resource-constrained project scheduling with uncertain activity durations. Flexible Services and Manufacturing Journal, 25(1-2), 175-205. http://dx.doi.org/10.1007/s10696-012-9147-2.

Aslan, B., Stevenson, M., & Hendry, L. (2012). Enterprise Resource Planning systems: an assessment of applicability to Make-To-Order companies. Computers in Industry, 63(7), 692-705. http://dx.doi.org/10.1016/j.compind.2012.05.003.

Bushuev, M. (2014). Convex optimization for aggregate production planning. International Journal of Production Research, 52(4), 1050-1058. http://dx.doi.org/10.1080/00207543.2013.831998.

Buxey, G. (2003). Strategy not tactics drives aggregate planning. International Journal of Production Economics, 85(3), 331-346. http://dx.doi.org/10.1016/S0925-5273(03)00120-8.

Buxey, G. (2005). Aggregate planning for seasonal demand: reconciling theory with practice. International Journal of Operations & Production Management, 25(11), 1083-1100. http://dx.doi.org/10.1108/01443570510626907.

Cameron, N. S., & Braiden, P. M. (2004). Using business process re-engineering for the development of production efficiency in companies making engineered to order products. International Journal of Production Economics, 89(3), 261-273. http://dx.doi.org/10.1016/S0925-5273(02)00448-6.

Carvalho, A. N., Oliveira, F., & Scavarda, L. F. (2015). Tactical capacity planning in a real-world ETO industry case: an action research. International Journal of Production Economics, 167, 187-203. http://dx.doi.org/10.1016/j.ijpe.2015.05.032.

Carvalho, A. N., Oliveira, F., & Scavarda, L. F. (2016). Tactical capacity planning in a real-world ETO industry case: a robust optimization approach. International Journal of Production Economics, 180, 158-171. http://dx.doi.org/10.1016/j.ijpe.2016.07.019.

Carvalho, A. N., Scavarda, L. F., & Lustosa, L. J. (2014). Implementing finite capacity production scheduling: lessons from a practical case. International Journal of Production Research, 52(4), 1215-1230. http://dx.doi.org/10.1080/00207543.2013.848484.

Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering, 55(1), 183-194. http://dx.doi.org/10.1016/j.cie.2007.11.017.

Corti, D., Pozzetti, A., & Zorzini, M. (2006). A capacity-driven approach to establish reliable due dates in a MTO environment. International Journal of Production Economics, 104(2), 536-554. http://dx.doi.org/10.1016/j.ijpe.2005.03.003.

Coughlan, P., & Coghlan, D. (2002). Action research for operations management. International Journal of Operations & Production Management, 22(2), 220-240. http://dx.doi.org/10.1108/01443570210417515.

Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 214(2), 308-316. http://dx.doi.org/10.1016/j.ejor.2011.04.019.

Díaz-Madroñero, M., Mula, J., & Peidro, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research, 52(17), 5171-5205. http://dx.doi.org/10.1080/00207543.2014.899721.

Ebben, M. J. R., Hans, E. W., & Weghuis, F. M. O. (2005). Workload based order acceptance in job shop environments. OR-Spektrum, 27(1), 107-122. http://dx.doi.org/10.1007/s00291-004-0171-9.

Fernandes, B., Street, A., Valladão, D., & Fernandes, C. (2016). An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets. European Journal of Operational Research, 255(3), 961-970. http://dx.doi.org/10.1016/j.ejor.2016.05.038.

Gademann, N., & Schutten, M. (2005). Linear-programming-based heuristics for project capacity planning. IIE Transactions, 37(2), 153-165. http://dx.doi.org/10.1080/07408170590885611.

Giebels, M. (2000). EtoPlan a concept for concurrent manufacturing planning and control: building holarchies for manufacture-to-order environments (PhD thesis). University of Twente, Enschede.

Gosling, J., & Naim, M. (2009). Engineer-to-order supply chain management: a literature review and research agenda. International Journal of Production Economics, 122(2), 741-754. http://dx.doi.org/10.1016/j.ijpe.2009.07.002.

Grabenstetter, D., & Usher, J. (2014). Developing due dates in an engineer to order engineering environment. International Journal of Production Research, 52(21), 6349-6361. http://dx.doi.org/10.1080/00207543.2014.940072.

Hans, E. W., Herroelen, W., Leus, R., & Wullink, G. (2007). A hierarchical approach to multi-project planning under uncertainty. Omega, 35(5), 563-577. http://dx.doi.org/10.1016/j.omega.2005.10.004.

Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: a review and classification of procedures. International Journal of Production Research, 42(8), 1599-1620. http://dx.doi.org/10.1080/00207540310001638055.

Hicks, C., & Braiden, P. M. (2000). Computer-aided production management issues in the engineer-to-order production of complex capital goods explored using a simulation approach. International Journal of Production Research, 38(18), 4783-4810. http://dx.doi.org/10.1080/00207540010001019.

Hicks, C., McGovern, T., & Earl, C. F. (2000). Supply chain management: a strategic issue in engineer-to-order manufacturing. International Journal of Production Economics, 65(2), 179-190. http://dx.doi.org/10.1016/S0925-5273(99)00026-2.

Huang, S., Lu, M., & Wan, G. (2011). Integrated order selection and production scheduling under MTO strategy. International Journal of Production Research, 49(13), 4085-4101. http://dx.doi.org/10.1080/00207543.2010.496797.

Ishii, N., Takano, Y., & Muraki, M. (2014). An order acceptance strategy under limited engineering man-hours for cost estimation in Engineering-Procurement-Construction projects. International Journal of Project Management, 32(3), 519-528. http://dx.doi.org/10.1016/j.ijproman.2013.07.009.

Jamalnia, A., & Feili, A. (2013). A simulation testing and analysis of aggregate production planning strategies. Production Planning & Control. The Management of Operations, 24(6), 423-448.

Leiras, A., Elkamel, E., & Hamacher, S. (2010). Strategic planning of integrated multirefinery networks: a robust optimization approach based on the degree of conservatism. Industrial & Engineering Chemistry Research, 49(20), 9970-9977. http://dx.doi.org/10.1021/ie100919z.

Lingitz, L., Morawetz, C., Gigloo, D. T., Minner, S., & Sihn, W. (2013). Modelling of flexibility costs in a decision support system for midterm capacity planning. Procedia CIRP, 7, 539-544. http://dx.doi.org/10.1016/j.procir.2013.06.029.

Little, D., Rollins, R., Peck, M., & Porter, J. K. (2000). Integrated planning and scheduling in the engineer-to-order sector. International Journal of Computer Integrated Manufacturing, 13(6), 545-554. http://dx.doi.org/10.1080/09511920050195977.

Liu, J., Lin, Z., Chen, Q., Mao, N., & Chen, X. (2013). A decision support to assign mould due date at customer enquiry stage in computer-integrated manufacturing (CIM) environments. International Journal of Computer Integrated Manufacturing, 26(6), 571-582. http://dx.doi.org/10.1080/0951192X.2012.749526.

Mestry, S., Damodaran, P., & Chen, C. (2011). A branch and price solution approach for order acceptance and capacity planning in make-to-order operations. European Journal of Operational Research, 211(3), 480-495. http://dx.doi.org/10.1016/j.ejor.2011.01.002.

Monostori, L., Erdos, G., Kadar, B., Kis, T., Kovacs, A., Pfeiffer, A., & Vancza, J. (2010). Digital enterprise solution for integrated production planning and control. Computers in Industry, 61(2), 112-126. http://dx.doi.org/10.1016/j.compind.2009.10.008.

Montreuil, B., Labarthe, O., & Cloutier, C. (2013). Modelling client profiles for order promising and delivery. Simulation Modelling Practice and Theory, 35, 1-25. http://dx.doi.org/10.1016/j.simpat.2013.03.003.

Mourtzis, D., Doukas, M., Fragou, K., Efthymiou, K., & Matzorou, V. (2014). Knowledge-based estimation of manufacturing lead time for complex engineered-to-order products. In Proceedings of the 47th CIRP Conference on Manufacturing Systems; Procedia CIRP 17, Ontario, Canada.

Nam, S. J., & Logendran, R. (1992). Aggregate production planning: a survey of models and methodologies. European Journal of Operational Research, 61(3), 255-272. http://dx.doi.org/10.1016/0377-2217(92)90356-E.

Olhager, J. (2003). Strategic positioning of the order penetration point. International Journal of Production Economics, 85(3), 319-329. http://dx.doi.org/10.1016/S0925-5273(03)00119-1.

Oliveira, F. L. C., Souza, R. C., & Marcato, A. L. M. (2015). A time series model for building scenarios trees applied to stochastic optimisation. Electrical Power and Energy Systems, 67, 315-323. http://dx.doi.org/10.1016/j.ijepes.2014.11.031.

Pandit, A., & Zhu, Y. (2007). An ontology-based approach to support decision-making for the design of ETO (Engineer-To-Order) products. Automation in Construction, 16(6), 759-770. http://dx.doi.org/10.1016/j.autcon.2007.02.003.

Powell, D., Strandhagen, J., Tommelein, I., Ballard, G., & Rossi, M. (2014). A new set of principles for pursuing the lean ideal in Engineer-to-Order manufacturers. In Proceedings of the 47th CIRP Conference on Manufacturing Systems, Procedia CIRP 17, Ontario, Canada.

Ramezanian, R., Rahmani, D., & Barzinpour, F. (2012). An aggregate production planning model for two phase production systems: solving with genetic algorithm and tabu search. Expert Systems with Applications, 39(1), 1256-1263. http://dx.doi.org/10.1016/j.eswa.2011.07.134.

Ribas, G. P., Leiras, A., & Hamacher, S. (2012). Operational planning of oil refineries under uncertainty Special issue: applied stochastic optimization. Journal of Management Mathematics, 23, 397-412.

Sawik, T. (2009). Multi-objective due-date setting in a make-to-order environment. International Journal of Production Research, 47(22), 6205-6231. http://dx.doi.org/10.1080/00207540902810585.

Sharda, B., & Akiya, N. (2012). Selecting make-to-stock and postponement policies for different products in a chemical plant: a case study using discrete event simulation. International Journal of Production Economics, 136(1), 161-171. http://dx.doi.org/10.1016/j.ijpe.2011.10.001.

Sinisgalli, E. S. L., Urbina, L. M. S., & Alves, J. M. (2009). The Activity Based Costing and the throughput accounting in the definition of the production mix in a metalwork firm. Production, 19(2), 332-344. http://dx.doi.org/10.1590/S0103-65132009000200009.

Thomé, A. M. T., Scavarda, L. F., Scavarda, A., & Thomé, F. E. S. S. (2016). Similarities and contrasts of complexity, uncertainty, risks, and resilience in supply chains and temporary multi-organization projects. International Journal of Project Management, 34(7), 1328-1346. http://dx.doi.org/10.1016/j.ijproman.2015.10.012.

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008). Proactive heuristic procedures for robust project scheduling: an experimental analysis. European Journal of Operational Research, 189(3), 723-733. http://dx.doi.org/10.1016/j.ejor.2006.10.061.

Wang, X., Xie, X., & Cheng, T. C. E. (2013). Order acceptance and scheduling in a two-machine flowshop. International Journal of Production Economics, 141(1), 366-376. http://dx.doi.org/10.1016/j.ijpe.2012.08.020.

Willner, O., Powell, D., Duchi, A., & Schönsleben, P. (2014). Globally distributed engineering processes: making the distinction between Engineer-to-order and Make-to-order. In Proceedings of the 47th CIRP Conference on Manufacturing Systems, Procedia CIRP 17, Ontario, Canada.

Yang, L. (2013). Key practices, manufacturing capability and attainment of manufacturing goals: the perspective of project/engineer-to-order manufacturing. International Journal of Project Management, 31(1), 109-125. http://dx.doi.org/10.1016/j.ijproman.2012.03.005.

Zijm, W. H. M. (2000). Towards intelligent manufacturing planning and control systems. OR-Spektrum, 22(3), 313-345. http://dx.doi.org/10.1007/s002919900032.

Zorzini, M., Corti, D., & Pozzetti, A. (2008). Due date (DD) quotation and capacity planning in make-to order companies: results from an empirical analysis. International Journal of Production Economics, 112(2), 919-933. http://dx.doi.org/10.1016/j.ijpe.2007.08.005.

5b86d8b20e88259910e4c8a0 production Articles
Links & Downloads

Production

Share this page
Page Sections