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1. Introduction

The steel industry plays a crucial role in global infrastructure, construction, and metal-mechanics 
manufacturing (Sampaio Brasil et al., 2024). Due to its strength and versatility, steel is vital in construction, 
machinery, transportation, rural applications, and consumer goods (Camargo et al., 2018). International trade 
policies, such as U.S. tariffs on steel and aluminum, can substantially affect this industry, increasing operational 
burdens and underscoring the need to identify efficiency constraints (Silva, 2025).
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Within the steel industry, the rolling of bars and profiles generates the highest value. Measuring the efficiency 
of this process is therefore essential. While prior research has emphasized increasing capacity and productivity, it 
has often overlooked disruptions, cost implications, and scrap generation. Furthermore, production mix and water 
consumption—key variables in bar and profile rolling—have frequently been ignored (Sampaio Brasil et al., 2024).

Data Envelopment Analysis (DEA) is a well-established approach to evaluating productivity and efficiency 
in complex systems like steel manufacturing (Camanho et  al., 2024). DEA compares the relative efficiency 
of decision-making units (DMUs) based on multiple inputs and outputs (Charnes et al., 1978) and employs 
benchmarking to contextualize performance (Piran et al., 2021, 2023).

Traditional DEA often functions as a “black box,” providing limited insight into internal process contributions 
(Seth et al., 2024). Kao (2014) addressed this by proposing a foundational NDEA framework that enables the 
decomposition of overall efficiency into interconnected sub-processes, enhancing internal benchmarking and 
offering more detailed performance analysis.

Network DEA (NDEA) addresses the limitations of traditional DEA by revealing the role of sub-processes within 
the broader system (Färe & Grosskopf, 2000). Kao (2014) advanced this perspective by introducing a structured 
approach to internal benchmarking, enabling the decomposition of overall efficiency into interrelated stages. 
However, as Chen et al. (2013) caution, NDEA presents methodological pitfalls: while envelopment-based models 
are appropriate for frontier projection, they may not capture divisional efficiencies accurately, and multiplier-
based models, though suitable for assessing divisions, may produce infeasible projections. These differences 
highlight the importance of aligning model choice with specific research objectives. NDEA has been applied 
across various manufacturing sectors (Chen et al., 2020; Lu et al., 2021; Omid & Zegordi, 2015) and specifically 
in steel production (Omid & Zegordi, 2015; Wu et al., 2017; Yang et al., 2014, 2017; Nasim et al., 2022).

Studies comparing traditional DEA and NDEA in steel production highlight the latter’s ability to assess 
process chains and regional efficiencies. For example, Yang et al. (2017) used NDEA to assess multiple firms and 
regional differences, while Nasim et al. (2022) incorporated undesirable outputs using a Directional Distance 
Function (DDF) model. Omid & Zegordi (2015) integrated NDEA with the Analytic Hierarchy Process (AHP) to 
assign variable weights.

Given the limitations of traditional DEA models in capturing the complexity of internal operational structures, 
Network Data Envelopment Analysis (NDEA) has emerged as an alternative for assessing interconnected processes 
within organizations (Färe & Grosskopf, 2000; Kao, 2014). This research builds upon and extends the analytical 
foundations established by Piran et al. (2021), who utilized classical DEA models to evaluate internal performance, by 
incorporating a network-oriented approach that offers a more detailed and structured decomposition of efficiency 
across sub-processes. In this context, the present study advances the literature by introducing several original 
contributions: (1) it provides the first empirical application of NDEA using real-world data from the metal industry 
(unlike previous studies that applied the classical DEA approach by treating the system as a black box); (2) it enhances 
the understanding of how production lines and internal processes influence overall performance, thereby supporting 
data-driven managerial decision-making; (3) it establishes a benchmarking framework across operational sectors, 
enabling comparative productivity analysis among distinct units; and (4) it identifies key performance bottlenecks, 
proposing evidence-based strategies for continuous improvement and operational optimization.

This study addresses the following research question: What is the efficiency of the steel rolling process, considering 
its networked operations through the application of the Network DEA (NDEA) model using internal benchmarking? 
To answer this, the research evaluates the network efficiency of the bar and profile rolling process using NDEA, 
incorporating internal benchmarking to identify critical incidents and performance patterns. This research is the 
first to apply this combination and demonstrates its potential for promoting operational improvements.

The structure of this paper is as follows: Section 2 outlines the theoretical background, focusing on key 
NDEA studies. Section 3 details the methodology, while Section 4 presents the results, emphasizing both overall 
system performance and critical inefficiencies. Section 5 discusses theoretical contributions, followed by the 
conclusions in Section 6.

2. Theoretical background

Adopting a development-oriented approach to NDEA, Zhang & Zhang (2025) evaluated the energy supply 
system in China. The study incorporated components such as electricity production, electricity sales, and the 
generation of both fossil and non-fossil energy. The findings indicate that inefficiency primarily occurs in 
non-fossil energy substage. Additionally, the study highlights the importance of incorporating energy-related 
variables into the development of NDEA models (Zhang & Zhang, 2025).
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NDEA models can be applied across various sectors, including production and finance. In the case of a 
two-stage NDEA, the first stage should incorporate inputs and intermediate outputs, while the second stage 
should include additional inputs, intermediate outputs, and final outputs (Zibaei Vishghaei et al., 2024). An 
example of this application is found in the oil production sector, where two stages were assessed: the first 
evaluated the capacity to convert resources into actual production, and the second measured how production 
from the first stage was transformed into profit (Jung et al., 2025).

Nevertheless, studies examining efficiency trends over time in the steel industry remain scarce. Yang et al. 
(2014) analyzed pig iron production as an intermediate stage and crude steel as the final product using a three-
stage NDEA model. The model employed capital investment and total labor as inputs in the first stage, pig iron 
as the second-stage output and third-stage input, and crude and finished steel as final outputs.

In another study, Yang et al. (2017) compared DEA and NDEA in casting and billet production. Inputs such 
as casting time, alloy content, steel scrap, and electricity were used in the first stage, with billets produced and 
later serving as inputs for the third stage. The final output was qualified steel, derived after additional gas and 
electricity consumption.

Wu  et  al. (2017) integrated sustainability into NDEA by including environmental variables. The three-
stage model used energy, freshwater, and iron ore in the first stage. Outputs like pig iron and crude steel were 
transferred between stages, along with wastewater, environmental staff, and treatment costs. Final outputs 
included wastewater disposal and reusable water.

Yang et al. (2017) also analyzed technical efficiency across regions using data from 26 firms. Inputs included 
fixed asset investment and workforce size, with pig iron produced in the second stage and crude and finished 
steel in the final stage.

Applications of NDEA extend beyond steel. Omid & Zegordi (2015) assessed a Chinese carpet firm using 
15 DMUs. Their three-stage model used raw materials, wages, and expenses to produce perfect carpets, which 
were then used to generate internal and external sales profits.

Lu et al. (2021) evaluated eight machinery firms in Taiwan using a similar model. Barat et al. (2019) applied 
a three-stage network to 20 petrochemical companies, and Nasim et al. (2022) extended NDEA to a four-stage 
model assessing 42 cement firms. Song et al. (2020) examined airline efficiency across national markets and 
Khoveyni & Eslami (2022) analyzed a manufacturing supply network consisting of 20 supply chains.

3. Methodological procedures

This study adopts a case-based research approach, which is particularly appropriate for investigating complex 
social phenomena (Yin, 2005). As an empirical method, the case study enables the examination of one or more 
units of analysis, allowing for a deeper understanding of the phenomenon under investigation (Miguel, 2007; 
Eisenhardt & Graebner, 2007).

Specifically, we conducted a longitudinal case study with a quantitative focus, appropriate for single-case 
designs, as it enhances internal validity (Piran et al., 2020; Sampaio Brasil et al., 2024). The study was structured 
in two main stages: (i) defining the case and the NDEA model, and (ii) data collection and analysis. The details 
of the method, which includes the two main stages described above, are presented in Figure 1.

Given that the case was developed in the largest steel company in Brazil, the stages outlined in Figure 1 
provide a replicable framework for applying the NDEA model to evaluate efficiency in steel industries.

3.1. Definition of the case and the NDEA model

The case involves a steel company responsible for both domestic and international operations in scrap 
metal recycling and steel production. Its primary clients are from the construction, automotive, and agricultural 
sectors. The company operates 40 plants, employs over 30,000 people across 12 countries, and reported a net 
revenue of USD 13 billion in 2024.

The company operates under a semi-integrated model, organized into production and support sectors. 
Production includes the melt shop, rolling mills, drawing mills, nail factory, and finished products. Support 
functions encompass maintenance, utilities, administration, and human resources.

This study focuses on the rolling mill process, which manufactures reinforcing steel and profiles used in the 
construction and metalworking industries. In this process, billets are fed into the rolling mill via a roller path to 
achieve the desired shape. Once shaped, the billet becomes a “piece,” which proceeds to the cutting stage, still 
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on the roller path. After cutting, the pieces are moved to the cooling bed, then bundled, weighed, identified, 
and dispatched to storage. The entire process is automated and managed from control rooms.

Following the definition of the production process, a team of experts was assembled to support the study 
and contribute to the development of the DEA model (Table 1). The selected experts included a mechanical 

Figure 1. Research Procedure Stages.

Table 1. Group of company experts.

Position
Length of time with the 

company
Education

Mechanical engineer (specializing in rolling mill 
maintenance)

20 years Degree in mechanical engineering; Specialization 
in hydraulics, steel processes, and maintenance 

engineering.

Process engineer 30 years Degree in mechanical engineering; Specialization 
in rolling mill processes, work safety, and business 

management.

Production engineer 15 years Degree in Production Engineering; Specialization in 
People Management.

Operator in charge of central control 28 years Technical level; Specialization courses in rolling 
processes. Benchmarking in other companies in the 

group.

Automation technical assistant 18 years Degree in electrical engineering; Postgraduate degree 
in industrial automation.
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engineer specializing in rolling mill maintenance, a process engineer, a production engineer, a central control 
operator, and a technical assistant in automation.

The efficiency levels were estimated under the assumption of constant returns to scale (CRS), given the 
comparable scale size among DMUs. This assumption aligns with the internal benchmarking context, where 
the unit of analysis is evaluated against itself over time (e.g., Piran et al., 2020, 2021). An output-oriented CRS 
model was applied using a series structure, where Zp  represents the intermediate products, Xj  the inputs, and 
Yr  the outputs. The model follows the generalized formulation presented by Kao and Hwang (2008), defined 
by Equations 1 to 9.
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Where:

ru  = Weight applied to output r

iv  = Weight applied to input i

pw  = Weight applied to intermediate variable p

ijX  = Quantity of input i  in DMU j

rjY  = Quantity of output r  in DMU . j .

pjZ  = Quantity of Variable p  in DMU j

rkY  = Quantity of output r  in the DMU under analysis

ikX  = Quantity of input i  in the DMU under analysis
r  = Index of outputs
i  = Index of inputs
k  = Index of the decision-making unit (DMU) under evaluation
p  = Index of intermediate variables
. t . = Index of the stage in multi-stage process models
j  = Quantity of DMUs

m  = Quantity of inputs
 = Quantity of outputs

q = Quantity of intermediate variables
h  = Quantity of stages in the model
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Intermediate products from stage t serve as outputs for stage t and inputs for stage 1t + . In the last process, 
h, the intermediate products correspond to the outputs of the system. Constraints in Equation 3 apply to the 
entire system, while those in Equations 4, 5 and 7 apply to individual stages. The constraint system is redundant 
and could be omitted. Therefore, the number of constraints is equal to the number of DMUs multiplied by the 
number of processes in the system. Thus, a DMU is only considered efficient if all its processes are efficient. 
Therefore, the efficiency of each process will be given by Equations 10-12 where *ur , *vi  and ( ) *wp t  are the 
optimal multipliers (Kao, 2009).
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DMUs were defined based on previous NDEA applications in the steel industry (Yang et al., 2014; Wu et al., 
2017; Yang et al., 2017; Barat et al., 2019; Chen et al., 2020; Song et al., 2020; Lu et al., 2021; Nasim et al., 
2022; Khoveyni & Eslami, 2022). Based on literature and expert analysis, product families from the rebar and 
profile rolling lines were selected as DMUs. Data was organized quarterly, allowing for the inclusion of product 
families that were inactive during certain months. The analysis period spans January 2020 to December 2023, 
encompassing four years of production and input data. This phase allowed for comprehensive data acquisition.

The network, shown in Figure 2, comprises 14 variables across three stages and includes data from 16 DMUs.

Figure 2. NDEA Network.
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After defining the variables, the model was reviewed by a group of specialists to assess data availability. 
The specialists confirmed that the required data could be retrieved from various company systems. 
Accordingly, data related to the operation under analysis were obtained from the following systems: (i) 
MES (Manufacturing Execution System) EPS (eProductivity Software): a system used to monitor and control 
production activities on the shop floor; (ii) SIGE (Energy Management System): enables the collection of 
data related to electricity consumption; (iii) Utility Supervisory; and, (iv) SAP (Systems Applications and 
Products in Data Processing): provides comprehensive control over various business processes, supporting 
integrated enterprise management.

3.2. NDEA data collection and analysis

Table 2 summarizes the data collection methods defined for each variable in the model, along with the 
respective systems from which the data were obtained.

Table 2. Data collection planning.

Variable Form of calculation System to be collected

Steel billet The sum of the number of tons used to produce a given product family. MES EPS

Natural gas The sum of the volume of natural gas used to produce a given product family. SIGE

Electricity The sum of the amount of electricity used to produce a given product family. SIGE

Water The sum of the volume of raw water used to produce a given product family. Utility Supervisory

Hot parts The sum of the number of tons used to produce a given product family, excluding 
possible scrap and metal loss.

MES EPS

Product The sum of the good parts produced in each product family. MES EPS

Scrap (-) Sum, in tons, of the parts lost due to interruption. SAP

Metal loss (-) Sum, in tons, of the raw materials lost due to discontinuations inherent in the 
production of each product family.

SAP

Table 3 presents the descriptive statistics for the variables, including minimum, maximum, mean, and standard 
deviation. It also lists previous studies that have addressed each variable.

The primary raw material used in the production of profiles and rebars is the billet, which undergoes a heating 
process before being rolled to produce finished steel and its subsequent products. The billet serves as an input 
in the first stage of the process (Omid & Zegordi, 2015; Yang et al., 2017, Nasim et al., 2022).

Water is a shared input across subprocesses and is essential for cooling both the furnace instrumentation 
and the raw material as it passes through the rolling stage (Nasim et al., 2022; Wu et al., 2017).

Electricity is another key input, utilized throughout all stages of production and across subprocesses (; 
Wu et al., 2017; Yang et al., 2017; Nasim et al., 2022). Natural gas is used to heat the furnaces and is categorized 
as an initial input in the first stage (Yang et al., 2017).

Following the heating stage, the output consists of heated parts that must reach a standardized temperature 
before proceeding to the rolling process. These hot parts then become an input in the second stage (Nasim et al., 
2022; Wu et al., 2017).

The data analysis first evaluates the efficiency of the three stages in the serial network using Network Data 
Envelopment Analysis (NDEA), with a focus on internal benchmarking and overall network performance. The 
analysis also includes the assessment of critical incidents in the system.

The combination of the critical incident technique with internal benchmarking is useful for examining the 
impact of management actions or interventions over time (Piran et al., 2023).

Critical incidents are classified as either external (ECI) or internal (ICI). ECIs refer to non-controllable events 
that influence system outcomes, while ICIs are controllable events or managerial actions aimed at improving 
efficiency (Piran et al., 2021).

4. Results analysis

4.1. Overall system efficiency

The model was applied to calculate the efficiencies of the DMUs within the network. The overall average 
efficiency was 41.99%, with a minimum of 15.12% and a standard deviation of 0.1990. Table 4 presents the 
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Table 3. Descriptive statistics of the variables.

Type Variable Statistic Value Previous studies

Input
Natural gas ( 1x )

Minimum 42,020.60 Yang et al. (2017)

Maximum 85,285.79

Mean 64,267.71

Standard deviation 12,936.08

Input
Raw materials ( 2x )

Minimum 419.54 Omid & Zegordi (2015), Nasim et al. (2022), 
Yang et al. (2017)Maximum 1,908.20

Mean 1,245.78

Standard deviation 366.47

Input
Electricity ( 3x )

Minimum 2,236.09 Nasim et al. (2022), Wu et al. (2017), 
Yang et al. (2017)Maximum 4,016.85

Mean 3,378.93

Standard deviation 556.16

Input
Water ( 4x )

Minimum 7,008.16 Nasim et al. (2022), Wu et al. (2017)

Maximum 11,326.74

Mean 8,748.45

Standard deviation 1,282.34

Input
Electricity ( 5x )

Minimum 97,269.97 Nasim et al. (2022), Wu et al. (2017), 
Yang et al. (2017)Maximum 174,732.94

Mean 146,983.47

Standard deviation 24,193.15

Input
Water ( 6x )

Minimum 13,015.15 Nasim et al. (2022), Wu et al. (2017)

Maximum 21,035.37

Mean 16,247.13

Standard deviation 2,381.50

Input
Electricity ( 7x )

Minimum 12,298.50 Nasim et al. (2022), Wu et al. (2017), 
Yang et al. (2017)Maximum 22,092.67

Mean 18,584.12

Standard deviation 3,058.90

Intermediate variable
Hot parts ( 1z )

Minimum 418.90 Nasim et al. (2022), Wu et al. (2017)

Maximum 1,905.28

Mean 1,243.88

Standard deviation 365.91

Intermediate variable
Rolled parts ( 2z )

Minimum 413.77 Nasim et al. (2022), Wu et al. (2017)

Maximum 1,881.93

Mean 1,228.64

Standard deviation 361.43

Output
Metal loss ( 1y )

Minimum 0.06 Yang et al. (2017)

Maximum 0.29

Mean 0.19

Standard deviation 0.06

Output
Scrap ( 2y )

Minimum 0.58 Yang et al. (2017)

Maximum 2.63

Mean 1.71

Standard deviation 0.50

Output
Metal loss ( 3y )

Minimum 5.77 Yang et al. (2017)

Maximum 26.26

Mean 17.15

Standard deviation 5.04

Output
Scrap ( 4 )

Minimum 1.28 Yang et al. (2017)

Maximum 5.84

Mean 3.81

Standard deviation 1.12

Output
Final product ( 5y )

Minimum 406.71 Omid & Zegordi (2015), Wu et al. (2017)

Maximum 1,849.84

Mean 1,207.68

Standard deviation 355.26
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sixteen quarters analyzed, representing the sixteen DMUs in the network and covering a continuous 48-month 
period from January 2020 to December 2023.

As shown in Table 4, higher DMU performance within the network corresponds to a higher overall efficiency 
score. DMU 06 (2nd quarter of 2021) demonstrated the highest efficiency. In contrast, DMUs 12 (Q4 2022), 
11 (Q3 2022), 16 (Q4 2023), and 8 (Q4 2021) recorded the lowest efficiency scores during the analyzed period. 
In DMUs 8, 12, and 16, efficiency was significantly affected by a reduction in production volumes (y5), primarily 
due to regular corrective and preventive maintenance stoppages across all equipment. For DMU 11, the reduction 
in production volume (y5) was attributed to elevated inventory levels during the same period.

To support the analysis of network efficiency, Figure 3 provides a graphical representation of the overall 
efficiency values from Table 4. This visualization helps to identify efficiency trends over time.

Table 4. Overall efficiencies.

Reference DMU Overall Efficiency Efficiency Stage 1 Efficiency Stage 2 Efficiency Stage 3

1st quarter 2020 DMU 01 52.78% 82.89% 87.36% 72.89%

2nd quarter 2020 DMU 02 50.22% 88.13% 70.48% 80.85%

3rd quarter 2020 DMU 03 39.01% 79.35% 66.77% 73.64%

4th quarter 2020 DMU 04 30.53% 80.93% 64.61% 58.39%

1st quarter 2021 DMU 05 55.76% 88.23% 90.16% 70.10%

2nd quarter 2021 DMU 06 99.23% 100% 99.23% 100%

3rd quarter 2021 DMU 07 38.89% 79.16% 68.84% 71.36%

4th quarter 2021 DMU 08 28.44% 74.22% 72.03% 53.20%

1st quarter 2022 DMU 09 43.79% 76.20% 79.41% 72.37%

2nd quarter 2022 DMU 10 43.88% 74.79% 68.67% 85.43%

3rd quarter 2022 DMU 11 17.77% 68.05% 47.80% 54.62%

4th quarter 2022 DMU 12 15.12% 73.62% 94.97% 21.63%

1st quarter 2023 DMU 13 56.61% 77.74% 100% 72.81%

2nd quarter 2023 DMU 14 32.76% 70.62% 70.06% 66.20%

3rd quarter 2023 DMU 15 43.52% 75.14% 67.83% 85.39%

4th quarter 2023 DMU 16 23.50% 75.74% 56.57% 54.85%

Mean 41.99% 79.05% 75.30% 68.36%

Standard deviation 0.1990 0.0784 0.1517 0.1775

Minimum 15.12% 68.05% 47.80% 21.63%

Maximum 99.23% 100% 100% 100%

Figure 3. Global efficiencies.
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Understanding the contribution of each stage to the overall efficiency is essential for identifying key 
improvement areas or process bottlenecks. Figure 4 illustrates how variations in the efficiency of individual 
stages influence the overall efficiency score. These fluctuations emphasize the need for a detailed assessment 
to identify specific causes and to guide management in developing targeted strategies.

Figure 4. Integrated analysis of efficiencies. 

Table 5. Quarterly and year efficiency means.

Quarter Mean efficiency Year Mean efficiency

1st quarters 52.23% 2020 43.13%

2nd quarters 56.52% 2021 55.58%

3rd quarters 34.80% 2022 30.14%

4th quarters 24.40% 2023 39.10%

To examine average efficiencies by quarter, Table 5 was created. The data reveal that the lowest averages 
occurred in the fourth quarter of each year, with a mean efficiency of 24.40%. To broaden the analysis, annual 
mean efficiencies were also calculated. The results indicate variability across the years analyzed, with the lowest 
average recorded in 2021 (30.14%) and the highest in 2020 (55.58%).

Understanding how each stage contributes to overall efficiency helps identify key areas for improvement or 
potential bottlenecks in the process, enabling more effective intervention. Among the sixteen DMUs evaluated, 
56.25% showed a negative contribution from the third stage to the overall efficiency, highlighting the need to 
monitor the material output from the rolling mill. Meanwhile, the second stage had a negative contribution in 
43.75% of the DMUs.

4.2. Analysis of critical incidents

The analysis began with the validation of efficiency behavior, followed by the identification of critical 
incidents. A total of five internal and one external critical incident were identified, as illustrated in Figure 5.

It is noteworthy that DMU 06 was the only case with an external critical incident. The events influencing 
overall efficiency were identified in collaboration with an expert group, using company records such as logbooks, 
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scheduling emails, and disruption reports. Subsequently, a survey of efficiency history was conducted, which 
included the time preceding each event, a detailed description, and the impact of each incident, as summarized 
in Table 6.

Figure 5. Identification of critical incidents. 

Table 6. Summary of critical incidents.

Critical incident DMU Quarter Description of critical incident Overall efficiency effect

ICI 1 DMU 04 4th quarter 2020 Maintenance stoppage from December 
2 to 30. No production occurred during 

this period.

Efficiency decreased by approximately 20%.

ICI 2 DMU 08 4th quarter 2021 Maintenance stoppage from December 1 
to 20. The restart was problematic, with 

several process disruptions.

Efficiency decreased by approximately 45%.

ICI 3 DMU 11 3rd quarter 2022 Rolling mill stoppage (2nd stage) for 120 
hours. Over 20 tons of parts lost; 400 
tons below the scheduled production 

volume.

Efficiency decreased by approximately 25%.

ICI 4 DMU 12 4th quarter 2022 Cooling chute stoppage (3rd stage) for 
96 hours.

Efficiency decreased by approximately 5%.

ICI 5 DMU 16 4th quarter 2023 Maintenance stoppage from December 
1 to 29. No production occurred during 

this period.

Efficiency decreased by approximately 18%.

ECI 1 DMU 06 2nd quarter 2021 Following the onset of the pandemic, the 
plant achieved record production due to 

supply shortages across the industry.

Efficiency increased by 50% (compared to the 
average of prior quarters). Production volume 

was 48% higher than the average of the 
previous five quarters.

Maintenance shutdowns are typically scheduled in the fourth quarter, particularly in December, as observed 
in ICI 1, 2, and 5. In ICI 1 and 5, maintenance lasted approximately 30 days, during which no material was 
produced. Although the shutdown in ICI 2 was shorter, the restart did not proceed as planned, adversely affecting 
key performance indicators, especially efficiency.

ICI 3 and ICI 4 were triggered by corrective maintenance, initiated upon detection of equipment faults 
during regular operations. These interruptions involved component replacements, emergency repairs, or other 
necessary actions to restore equipment functionality.
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5. Discussion of results

This study advances theoretical knowledge by contributing to the understanding and application of 
Network Data Envelopment Analysis (NDEA). Among its various advantages, a key strength of NDEA lies in its 
capacity to provide an internal visualization of each Decision-Making Unit (DMU), enabling detailed analysis of 
sub-processes. While traditional DEA evaluates the efficiency of a DMU using only inputs and outputs, NDEA 
extends this analysis by assessing the efficiency of each sub-process within the system (Omid & Zegordi, 2015).

Prior studies suggest that NDEA has primarily been applied in empirical contexts, emphasizing its relevance 
to real-world cases (Amir & Reza, 2022; Yang et al., 2014, 2017). However, the limited number of practical 
studies has constrained comprehensive evaluations of its benefits (Kao, 2014; Ratner et al., 2023).

This research presents all efficiency indices, both for individual stages and overall system performance. 
This approach enables the identification of relationships and sub-processes that contribute to reduced overall 
efficiency. Some studies report both overall and stage-specific efficiency indices (Lu et al., 2021; Wu et al., 
2017), while others focus solely on stage-level indicators (Amir & Reza, 2022).

The contribution of NDEA combined with internal benchmarking lies primarily in assessing and improving 
a company’s efficiency. By applying NDEA alongside internal benchmarking, firms can identify specific areas 
where performance falls short of their maximum efficiency potential, based on comparisons with their own 
best practices or historical performance. It also supports a continuous improvement strategy through regular 
performance monitoring and strategic adjustments. To the best of our knowledge, this is the first study to apply 
NDEA for internal benchmarking, which may encourage further practical applications of the method.

The study has practical implications for the company under analysis by validating the usefulness of combining 
NDEA with internal benchmarking to assess process efficiency. Process experts acknowledged that the NDEA-
derived efficiency scores offer a simplified framework for understanding the performance of operational units 
and sub-processes.

An analysis of the results indicates several reasons for the poor performance observed in certain DMUs, 
which experienced a significant decline in production volumes. For DMUs 8, 12, and 16, the main factor was 
the occurrence of routine corrective and preventive maintenance across all equipment. In the case of DMU 11, 
the underperformance was due to a high inventory level during the period. Understanding these practical causes 
of inefficiency enables the implementation of improvement actions, such as enhancing predictive maintenance 
practices.

Additionally, the use of critical incident analysis proved valuable. This method helps identify vulnerable areas 
within the process, allowing for targeted risk mitigation strategies. It also facilitates the recognition of recurring 
patterns that may contribute to persistent inefficiencies. The study is especially relevant to industrial sectors 
such as steel manufacturing, where operational complexity necessitates robust tools to evaluate efficiency and 
support decision-making.

6. Conclusion

This study aimed to evaluate the network efficiency of the steel rolling process in a bar and section 
manufacturing company by applying NDEA in combination with internal benchmarking. The case study was 
conducted in a Brazilian steel company specializing in the production of reinforcing bars and sections. The 
application of NDEA proved to be an effective tool for analyzing the organization’s efficiency performance.

From a theoretical standpoint, this research contributes to NDEA literature by applying the method in 
a real-world context and by incorporating internal benchmarking and critical incident analysis. Practically, 
the findings highlight the importance of understanding sub-process efficiencies to improve overall system 
performance. Furthermore, the results confirm that internal benchmarking using NDEA can drive meaningful 
process improvements.

The study also emphasizes the importance of critical assessments of NDEA applications in manufacturing 
settings, which are crucial to maximizing the method’s relevance and applicability. Analyzing sub-process efficiency 
in relation to overall performance enables the identification of key improvement areas, thereby enhancing system 
effectiveness. Moreover, the analysis of critical incidents provided insight into challenges and patterns that may 
inform preventive and corrective measures.

Despite these contributions, the study presents certain limitations. The NDEA model did not allow for inter-
plant comparisons due to confidentiality constraints, requiring adjustments to the model and the adoption 
of internal benchmarking. Moreover, the analysis was conducted on a quarterly basis, which may limit the 
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generalizability of the findings. The study also did not explore in depth the bottlenecks that affect system 
efficiency. Future research is encouraged to examine these dynamics more thoroughly.

This research lays the groundwork for future investigations on efficiency behavior by integrating NDEA with 
critical incident analysis. Future studies could expand on this work by incorporating external benchmarking, 
assessing targets and slack, and exploring two-dimensional representations of NDEA models within both internal 
and external benchmarking contexts.

Data availability

Research data is not available.
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