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1. Introduction 

Solid Waste Collection (SWC) is the process by which waste generated by human activity in urban areas is 
collected and transported (Tchobanoglous, 2009). This process is essential for maintaining hygiene and public 
health in cities, as it prevents the accumulation of waste in the streets and the spread of diseases. Thus, it has 
a significant impact on the quality of human life. First, the lack of waste collection can cause odors and attract 
insects and rodents, which can cause health problems in the nearby population (Ziraba et al., 2016; Hossain et al., 
2011; Alam & Ahmade, 2013; Mangoro & Kubanza, 2023). In addition, waste accumulation can clog drainage 
systems and cause flooding in rainy seasons (Abd Manaf et al., 2009).
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In recent years, some attention has been given to modelling, simulation, and optimization techniques for 
quality control capable of representing and improving waste collection processes (Cárdenas-Cuervo et al., 2023; 
Mascarenhas et al., 2021; Koot et al., 2021). These techniques support decision-making by helping to determine 
the best scenario in a combinatorial search space with stochastic variables (Sadati et al., 2024). Simulation-based 
optimization is used in a variety of quality control applications to find the best control parameter settings that 
maximize process efficiency and minimize errors and defects in the final product (Aljebory & Alshebeb, 2014; 
Volsuuri et al., 2023), evidencing that it is a valuable tool for designing and improving quality control processes, 
as it allows evaluating different scenarios and adjusting control parameters (Ahmad, 2018).

Quality control of SWC processes is essential to ensure public health, protect the environment, optimize 
the management of resources and costs, and fulfill the social responsibility to properly manage municipal solid 
waste (Saha et al., 2010). In addition, Zaccariello et al. (2015) state that quality indicators for process control 
and efficiency to measure the effectiveness of waste collection and disposal processes allow for evaluating the 
performance of SWC management.

Quality control still plays a vital function in the quality assurance of products and processes (Cogollo-Florez 
& Valencia-Mena, 2022; Valdés-Manuel & Cogollo-Flórez, 2022), as it allows for detecting and correcting errors 
before main problems occur. However, it can often be difficult to find solutions that balance the multiple and 
conflicting objectives that any operation may face, such as maximizing efficiency and quality, reducing costs, 
and optimizing cycle time (Sanjeevi & Shahabudeen, 2015; Purkayastha et al., 2019; Hannan et al., 2020).

One of the most viable techniques to provide solutions that balance multiple objectives is Goal Programming 
(GP) (Ignizio, 1983), an optimization technique that allows solving multi-objective problems by assigning 
priorities and assigning weights to each goal, which can be used to optimize different operations (Lyeme et al., 
2017). For GP process quality control application, first, the optimization objectives are stated; then, weights 
and priorities for each goal are assigned based on their relative importance to the process; finally, the model 
performance is assessed and improved (Cherif et al., 2008). In those applications, techniques such as Monte Carlo 
Simulation (MCS) could be used for making informed decisions and optimizing results in different scenarios 
(Carrazza & Cruz-Martinez, 2020; Li et al., 2013).

Simulation-based optimization models applied to SWC provide several advantages over predictive models 
of fixed inputs since the ability to perform sensitivity analysis or calculate the correlation of inputs. Moreover, 
Tian et al. (2007) and Wajs et al. (2000) state that advanced technologies adoption and the appropriate policies 
implementation can significantly reduce the environmental impact and assess the economic feasibility of SWC 
(Martín-Pascual et al., 2020; Abdullah, 2023).

We note that there are several papers using GP and MCS to improve the SWC process (Lu et al., 2020; Zaeimi 
& Rassafi, 2021; Pamukçu et al., 2023). However, it is possible to find a gap in the integration of these two 
tools and their impact on SWC process control. To address this, we propose a methodology in Python for process 
quality control to minimize process time in SWC. This approach will allow for the improvement of computational 
efficiency, scalability, and accessibility, due to the versatility and popularity of the language. The integration 
of goal programming and Monte Carlo simulation (GP-MCS) will serve as the foundation for an industrial 
development that will assist the municipal SWC company in significantly improving its quality control process, 
time management, strategic planning, and decision-making based on reliable data. The paper is structured 
as follows: the methodology is in section 2, the results are in section 3, and the conclusions are in section 4.

2. Methodology

The study case was applied to an urban SWC operation in a medium-sized city in Colombia. The city has an 
area of 571.8 square kilometers and is divided into nineteen (19) districts with a total population of 565,527. 
The city has a single company for the collection service. The company divides its routes by day, with a collection 
frequency of two (2) times per week, from Monday to Saturday. This is done to ensure that the entire waste 
collection limit of the city is covered. The database used has a total of 80,513 actual records, corresponding 
to 172 routes, containing information on route and vehicle codes, collection date, day of the week, start and 
end time, total operating time, total operating kilometers, number of trips required, number of compactors, 
and amount of fuel used in tons.

As a preliminary step to the proposed methodology, it was necessary to process the data. The 80,513 records 
were divided according to the day of the week on which the route was run. The route operating time was used 
as the performance measure, and the data was cleaned by excluding those that were three standard deviations 
above or below the average operating time, resulting in a total of 59,671 records.
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Figure 1. Methodology stages. 
Source: own elaboration based on based on Morán-Zabala & Cogollo-Flórez (2023a).

The results of Step 1 serve as inputs to Step 2. First, the probability distributions are established to model 
the uncertainty associated with the model variables and reduce their variability, thereby improving the accuracy 
and reliability of the results. Then, the mathematical model of the simulation is built to describe the interactions 
between the components of the system, and finally, the simulation runs are performed to obtain the results 
and data that represent the behavior and performance of the process in different scenarios and conditions, 
in order to study the variability and uncertainty of the process and the model parameters, thus improving the 
robustness and reliability of the results.

This methodology was implemented in Python to reduce the computational cost, and as future research 
it is proposed to take it to an industrial development. Details of the methodology and results are presented in 
the next section.

3. Results

3.1. Stage 1: Goal Programming (GP)

To perform the optimization approach as a GP lexicographic problem and to establish the model, it is necessary 
to minimize the problem to the sum of the deviation of the variable (Equation 1) from the target concerning the 

The Goal Programming – Monte Carlo Simulation methodology in SWC (GoProMoS-SWC) is based on Morán-
Zabala & Cogollo-Flórez (2023a). This methodology (Figure 1) represents a novel approach to the field of SWC 
processes, offering the potential to enhance performance through the application of quality control techniques. 
It uses the real operation data to integrate optimization and simulation techniques achieving better results in 
total operation time. The methodology has two main stages: Stage 1: GP and Stage 2: MCS. Stage 1 (GP) seeks 
to provide a solution to the problem posed through a clear and hierarchical definition of the objectives directly, 
allowing the decision-making process and planning to adapt and find better solutions. In the first step of this 
stage, it is necessary to define and describe the variables that will be used within the model to define relationships 
and propose the mathematical formulation. A multiple regression analysis is then performed to model and 
understand the relationships between a dependent variable and several independent variables to provide accurate 
estimates and projections useful for decision making. Then, to improve the precision and quality of the model, 
the variables are transformed according to the specification limits and the regression equations are modified. 
Subsequently, the penalized equation is determined and subjected to a series of constraints to limit the feasible 
solutions and adapt them to certain conditions of the problem. Finally, the results of this stage are analyzed.
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constraints. Equation 2 details the adequacy of the sum of variances for the problem, where iYP
, kXP

 and iRP
 

refer to the negative and positive penalty of output variables, input variables, and process variables, respectively, 
and n: [0, 1, 2, 3, 4, 5] (Sengupta, 1981; Cherif et al., 2008; Morán-Zabala & Cogollo-Flórez, 2023a).
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3.1.1. Variable model description and multiple regression analysis

Improving the capacity of the SWC process is vital to increase the quality of service and quality of life 
indices and to reduce inequalities between communities. For this purpose, the input variable considered in this 
study is Tons collected. The main quality characteristic to optimize and improve the process is the total time.

All process variables are measurable and controllable. The input variable is the number of tons collected 
(x). The greater the tons collected, the greater the workload and, therefore, the longer the time required to 
complete the process. Process variables such as total kilometers traveled (R1), the trips number (R2), compactions 
(R3), and fuel tons consumption (R4) are key indicators of the performance of the collection process. These 
variables provide insight into the utilization of resources and the efficiency of the process in terms of time and 
resources. By considering these input and process variables, areas for improvement and opportunities to optimize 
the collection process can be identified. These include reducing mileage or total collection time, increasing 
comparison efficiency, or improving route planning.

The output variables measured in hours correspond to the total time (Yn) of the collection process for the six 
days studied. The estimation of the total SWC time provides a comprehensive measure of the performance of 
the collection process. The total collection time reflects the efficiency and effectiveness of the system and can 
be used as a key metric to evaluate performance and make comparisons between different collection scenarios 
or strategies. Details of the input variable, process variables, and quality characteristic are in Table 1.

To perform a multiple linear regression analysis for each day, a study of the capacity of the urban SWC 
process was carried out for a collection service provider. The matrix with the respective correlation coefficients 
between the variables is shown in Figure 2. Thus, the following Equations 6 to 11 were obtained:

0 1 2 3 4 02.0450 0.2895 0.0384 0.0994 0.0034 0.0329Y x R R R R= + + − + +   	 (6)
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1 1 2 3 4 11.3188 0.17 0.0694 0.06726 0.0016 0.051Y x R R R R= + + + − +   	 (7)

2 1 2 3 4 20.8201 0.15 0.0499 0.8110 0.0063 0.049Y x R R R R= + + + + +   	 (8)

3 1 2 3 4 32.4326 0.24 0.0371 0.1320 0.0095 0.04Y x R R R R= + + − + +   	 (9)

4 1 2 3 4 41.7426 0.21 0.0649 0.0856 0.0047 0.047Y x R R R R= + + + + +   	 (10)

5 1 2 3 4 51.3138 0.133 0.0579 0.5633 0.0084 0.045Y x R R R R= + + + + +   	 (11)

In addition, Figure 2 shows the results of the correlation coefficients between the input variable and the 
process variables. The x variable is highly correlated with Y and R2, as well as R1 and R2 with Y. This indicates 
that there is a close relationship between the total tons collected and the total time required. This connection 
underscores the importance of considering these factors when effectively planning and managing harvesting 
operations, with the objective of optimizing efficiency and reducing total process times.

3.1.2. Variable transformation and modified regression equations

Transformation of variables to obtain one-side specifications and modify the constant terms in the regression 
equations according to (12) is shown from (13) to (18):

j j ULS ULS LLS= − ≤ −′ 		  (12)

9 4x x′ = − ≤ 		  (13)

1 1 25 20R R= − ≤′ 		  (14)

Table 1. Description of model variables.

Variable type Variable Specification limits Variable classification

Input (x) Tons collected [9, 13] Continuous

Process (R1) Total Km [25, 45] Continuous

(R2) Trips number [0, 2] Discrete

(R3) Compactions [2,4] Discrete

(R4) Fuel tons [6, 8] Continuous

Output (Yn) Total time [6, 8] Continuous

Source: own elaboration.

Figure 2. Correlation matrix variables. 
Source: own elaboration.
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2 2 0 2R R= − ≤′ 		  (15)

3 3 2 2R R= − ≤′ 		  (16)

4 4' 6 2R R= − ≤ 		  (17)

' 8 2n nY Y= − ≤ 		  (18)

Then, the modified regression for the six days equations applying ' ' ' ' '
1 2 3n mY Coeficient R x x x x′= + + + + …  are 

the following:

'
0 1 2 3 4 05.8164 0.2895 0.0384 0.0994 0.0034 0.0329Y x R R R R= + + − + +   	 (19)

'
1 1 2 3 4 14.8747 0.17 0.0694 0.06726 0.0016 0.051Y x R R R R= + + + − +   	 (20)

'
2 1 2 3 4 23.7187 0.15 0.0499 0.8110 0.0063 0.049Y x R R R R= + + + + +   	 (21)

'
3 1 2 3 4 35.8769 0.24 0.0371 0.1320 0.0095 0.04Y x R R R R= + + − + +   	 (22)

'
4 1 2 3 4 45.5840 0.21 0.0649 0.0856 0.0047 0.047Y x R R R R= + + + + +   	 (23)

'
5 1 2 3 4 54.2511 0.133 0.0579 0.5633 0.0084 0.045Y x R R R R= + + + + +   	 (24)

3.1.3. Determination of penalty equations and constraints.

The minimization of the GP problem for the six days can be formulated as follows, considering that n: [0, 
1, 2, 3, 4, 5]:
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+ ) +  𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥(𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥− + 𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥+)�
3
�

+ �𝑃𝑃𝑃𝑃𝑌𝑌𝑌𝑌4(𝛿𝛿𝛿𝛿𝑌𝑌𝑌𝑌4
− + 𝛿𝛿𝛿𝛿𝑌𝑌𝑌𝑌4

+ )
+ �𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅1(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅1

− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅1
+ ) +  𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅2(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅2

− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅2
+ ) + 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅3(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅3

− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅3
+ )

+ 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅4(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅4
− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅4

+ ) +  𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥(𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥− + 𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥+)�
4
�

+ �𝑃𝑃𝑃𝑃𝑌𝑌𝑌𝑌5�𝛿𝛿𝛿𝛿𝑌𝑌𝑌𝑌4
− + 𝛿𝛿𝛿𝛿𝑌𝑌𝑌𝑌5

+ �
+ �𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅1(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅1

− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅1
+ ) +  𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅2(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅2

− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅2
+ ) + 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅3(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅3

− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅3
+ )

+ 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅4(𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅4
− + 𝛿𝛿𝛿𝛿𝑅𝑅𝑅𝑅4

+ ) +  𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥(𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥− + 𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥+)�
5
�〉

	 (25)

Subject to:
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Input constraint

4x x
n

x δ δ− +′ + + =   		  (26)

Process constraints

1 11 2R R
n

R δ δ− +′ + + =   		  (27)

2 22' 20R R
n

R δ δ− + + + =   		  (28)

3 33' 2R R
n

R δ δ− + + + =   		  (29)

4 44 2R R
n

R δ δ− +′ + + =  
		  (30)

Output Constraints

' 8;      . .Y Y
n

Y i eδ δ− + + − =  
		  (31)

1 2 3 4 00.2895 0.0384 0.0994 0.0034 0.0329 2.1836x R R R R+ − + + =  
	 (32)

1 2 3 4 10.17 0.0694 0.06726 0.0016 0.051 3.1253x R R R R+ + − + =   		  (33)

1 2 3 4 20.15 0.0499 0.8110 0.0063 0.049 4.2813x R R R R+ + + + =   		 (34)

1 2 3 4 30.24 0.0371 0.1320 0.0095 0.04 2.1231x R R R R+ − + + =   		  (35)

1 2 3 4 40.21 0.0649 0.0856 0.0047 0.047 2.416x R R R R+ + + + =   		  (36)

1 2 3 4 50.133 0.0579 0.5633 0.0084 0.045 3.7489x R R R R+ + + + =  
	 (37)

The constraints (27) to (30) guarantee the fulfilment of the total kilometers target, the number of trips target, 
the number of compactions target, and tons of fuels target, respectively. Solving the lexicographic GP problem 
described in (25), the optimal solution to guarantee the ability of the process to meet the target specifications 
of the response variables for each day is shown in Table 2. If the optimization model for the SWC process does 
not meet the defined constraints, the negative effects can be significant. These include operational inefficiencies, 
increased costs, negative environmental impacts due to additional emissions and pollution, customer dissatisfaction 
due to delays or inconsistent service, and potential legal and regulatory risks such as fines or loss of licenses.

3.2. Stage 2: Monte Carlo Simulation (MCS)

3.2.1. Establishing of probability distributions

Based on the analysis of the available data, the parameters and probability distributions of the input and 
process variables must be configured (Morán-Zabala & Cogollo-Flórez, 2023b). As the data set for the simulation 
exceeded 5,000 observations, the Anderson-Darling goodness-of-fit test (AD-Test) was employed to assess 
the data fit to a specific distribution for each day. To this end, we fitted all the distributions and ranked their 
goodness-of-fit, from the most to least optimal, according to the weight of the area between the empirical and 

Table 2. Optimal solution for each day.

Days X R1 R2 R3 R4 Y

Monday (Y0) 9 32.37 1 2 6 6

Tuesday (Y1) 9 31.59 1 4 6 6

Wednesday (Y3) 9 38.44 2 2 6 6

Thursday (Y4) 9 35.48 2 2 6 6

Friday (Y5) 10.11 25 1 2 8 5.99

Saturday (Y6) 9 35.74 2 2 6 6
Source: own elaboration.
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the fitted cumulative distribution function (CDF). In this context, the smaller values corresponded to the more 
accurate fits. Table 3 shows the best fit distribution and parameters for days and variables. In addition, each 
distribution parameter for performing the simulation is shown. The adjustment made for each of the days and 
variables to find the best associated with the data is shown in Appendix A and the behaviour of the selected 
distributions in Appendix B.

3.2.2. Construction of the mathematical model

The general MCS mathematical model is based on (6) to (11) and presented in (38), considering the correlation 
coefficients (Figure 2) between variables and the probabilistic distributions, next, 10,000 simulation runs were 
performed.

𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛 = � 2.0450 + {0.2895[𝑥𝑥𝑥𝑥 𝑥 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(−0.67 + 16.34 + 1.79)]
𝑛𝑛𝑛𝑛𝑛𝑛

0
+ 0.0384[𝑅𝑅𝑅𝑅1 → 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(0.76;  34.40;  11.08)] − 0.0994[𝑅𝑅𝑅𝑅2 → 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆(99.41; 0.10; 0.02)]
+ 0.0034[𝑅𝑅𝑅𝑅3 → 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(1.81; 62.00; 11.60)]
+ 0.0329[𝑅𝑅𝑅𝑅4 → 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(3.82; 0.30; 0.02; 11.51)]}0
+ {0.1700[𝑥𝑥𝑥𝑥 𝑥 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0.27; 16.07; 1.04)] + 0.0694[𝑅𝑅𝑅𝑅1 → 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(0.79; 1.97; 13.53)]
+ 0.0672[𝑅𝑅𝑅𝑅2 → 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆(0.06; 2.00; 0.19)] − 0.0001[𝑅𝑅𝑅𝑅3 → 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(1.57; 60.00; 10.89)]
+ 0.0510[𝑅𝑅𝑅𝑅4 → 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺(0.50; 2.17; 8.45)]}1
+ {0.1500[𝑥𝑥𝑥𝑥 𝑥 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀(2.32; 10.88; −0.60; 18.41)]
+ 0.0499[𝑅𝑅𝑅𝑅1 → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(1.33; 38.61; 9.14)] + 0.8110[𝑅𝑅𝑅𝑅2 → 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆(0.19; 2.00; 0.21)]
− 0.0063[𝑅𝑅𝑅𝑅3 → 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(1.56; 60.00; 11.73)] + 0.0490[𝑅𝑅𝑅𝑅4 → 𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(0.50; 2)]}2
+ {0.24[𝑥𝑥𝑥𝑥 𝑥 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(1.14; 1.07;  13.96; 1.86)]
+ 0.0371[𝑅𝑅𝑅𝑅1 → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(0.95; 36.10; 11.72)] − 0.1320[𝑅𝑅𝑅𝑅2 → 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆(99.66; 0.26; 0.02)]
+ 0.0095[𝑅𝑅𝑅𝑅3 → 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0.31;  59.33;  5.66)]
+ 0.04[𝑅𝑅𝑅𝑅4 → 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵12(1.59; 7.16; 0.03; 25.11)]}3
+ {0.21[𝑥𝑥𝑥𝑥 𝑥 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀(3.20;  19.09; −1.80; 15.86)]
+ 0.0649[𝑅𝑅𝑅𝑅1 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁(−1.15; 38.10; 11.62)]
+ 0.0856[𝑅𝑅𝑅𝑅2 → 𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(0.29; 2.00; 0.00)]
+ 0.0047[𝑅𝑅𝑅𝑅3 → 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(16.15; 0.23; −21.68;  84.19)]
+ 0.047[𝑅𝑅𝑅𝑅4 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁(9.63; 1.35; 7.42)]}4
+ {0.133[𝑥𝑥𝑥𝑥 𝑥 𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(2.75;  10.56;  5.93]
+ 0.057[𝑅𝑅𝑅𝑅1 → 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(8.01;  0.38; −0.29;  43.58)]
+ 0.5633[𝑅𝑅𝑅𝑅2 → 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆(0.04;  2.00;  0.02)] + 0.0084[𝑅𝑅𝑅𝑅3 → 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(1.57; 60.00; 11.35)]
+ 0.045[𝑅𝑅𝑅𝑅4 → 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(35.45;  35.26; −2.16;  0.99)]}5

	 (38)

where Skc is Skewcauchy, LA is Laplace_Asimetric, Fc is Flodcauchy, Br is Burr, Gl is Genlogistic, Jsu is Johnsonsu, 
Nk is Nakagami, Fl is Fatiguelife, Mke is Mielke, Dg is Dgamma, ExN is Exponnorm, Dw is Dweibull, Br12 is Burr 
12, SkN is Skewnorm, GeN is Gennorm, and NiG is Norminvgauss.

3.2.3. Run simulations

Figure 3 shows the simulation histogram results for all the days measured in hours. The mean of the results 
for the 10,000 simulated days is 6.046 hours, indicating that the optimal solutions for these (see Table 2) are 
close to the current Lower Specification Limit (LSL) of six hours. With a 95% confidence interval estimation, 
the total times will vary with a standard deviation between 4.82 and 7.26 hours.

Although the simulation results include the current LSL and USL (Upper Specification Limit, 8 hours), they are 
located after the 50th percentile of the data distribution. Consequently, it is feasible to achieve total collection 
times of less than six hours in approximately 50% of cases. On the other hand, the output variable of the solid 
waste collection process (total time, Y) can be considered as a one-sided specification (the smaller the better), 
where the USL should be avoided to be exceeded.
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Table 3. Parameters and distributions selected for each variable and each day.

(Y0) (Y1) (Y3) (Y4) (Y5) (Y6)

X Skewcauchy (a=-
0.67, loc=16.34, 

scale=1.79)

Genlogistic 
(c=0.27, loc=16.07, 

scale=1.04)

Mielke (k=2.32, 
s=10.88, loc=-0.60, 

scale=18.41)

Johnsonsu (a=1.14, 
b=1.07, loc=13.96, 

scale=1.86)

Mielke (k=3.20, 
s=19.09, loc=-1.80, 

scale=15.86)

Gennorm (beta=2.75, 
loc=10.56, 
scale=5.93)

R1 laplace_asymmetric 
(kappa=0.76, 
loc=34.40, 

scale=11.08)

Johnsonsu (a=0.79, 
b=1.97, loc=37.21, 

scale=13.53)

Dgamma (a=1.33, 
loc=38.61, 
scale=9.14)

Dweibull (c=0.95, 
loc=36.10, 

scale=11.72)

Skewnorm (a=-
1.55, loc=38.10, 

scale=11.62)

Burr (c=8.01, 
d=0.38, loc=-0.29, 

scale=43.58)

R2 Foldcauchy (c=99.41, 
loc=0.10, scale=0.02)

Nakagami (nu=0.06, 
loc=2.00, scale=0.19)

Nakagami (nu=0.19, 
loc=2.00, scale=0.21)

Foldcauchy (c=99.96, 
loc=0.26, scale=0.02)

Gennorm (beta=0.29, 
loc=2.00, scale=0.00)

Nakagami (nu=0.04, 
loc=2.00, scale=0.04)

R3 laplace_asymmetric 
(kappa=1.81, 
loc=62.00, 

scale=11.60)

laplace_asymmetric 
(kappa=1.57, 
loc=60.00, 

scale=10.89)

laplace_asymmetric 
(kappa=1.56, 
loc=60.00, 

scale=11.73)

Genlogistic 
(c=0.31, loc=59.33, 

scale=5.66)

Burr (c=16.15, 
d=0.23, loc=-21.68, 

scale=84.19)

laplace_asymmetric 
(kappa=1.57, 
loc=60.00, 

scale=11.35)

R4 Burr (c=3.82, 
d=0.30, loc=0.02, 

scale=11.51)

Fatiguelife 
(c=0.50, loc=-2.17, 

scale=8.45)

Exponnorm (K=3.56, 
loc=2.46, scale=1.50)

burr12 (c=1.59, 
d=7.16, loc=0.03, 

scale=25.11)

Skewnorm (a=9.63, 
loc=1.35, scale=7.42)

Norminvgauss 
(a=35.45, b=35.26, 

loc=-2.16, 
scale=0.99)

Source: own elaboration.

In this case, it is not appropriate to calculate the potential capacity index, Cp, as it is only of practical interest 
to meet the USL and the target specification, T. Therefore, the index for the upper specification, Cpu, should 
be calculated. Then, when we calculated this index, the result is 0.69.puC =  This implies that if the collection 
company employs the optimal solutions identified for each day, it should result in a decrease in the LSL to a 
value between 4.5 and 5 hours. Moreover, the capability analysis of this type of process should focus on assessing 
whether the distribution of the quality characteristic data is centered with respect to T. This can be achieved by 
calculating the process centering index, K.

Thus, when calculating the K index with the current specification limits, the result is K = -95.4%. Hence, 
the process mean is deviated 95.4% to the left of T, so the process centering, and the USL are inadequate 
and require adjustment. Based on the distribution of the data in Figure 3, T = 6 hours and USL = 7 hours 
are proposed as new specification limits. As a result, the new value of K is 4.6%, considered as an acceptable 
off-centering (Gutiérrez Pulido & De la Vara Salazar, 2013). That does not significantly affect the capability of 
the process to meet the target specification of 6 hours of total collection time in accordance with the optimal 
solutions found (see Table 2).

After that, a sensitivity analysis was performed to predict the optimal outcomes of the response variables, 
Yn, considering the uncertainty conditions and using the Pearson ratio coefficient as a statistic to determine 
the strength of the relationship between the variables (Figure 4), showing that the variables that have the most 
influence in solid waste collection process total times are x and R1.

These most influential variables have a significant impact on the environment, operational efficiency, logistics 
and process costs, since the more miles traveled, the more greenhouse gas emissions are generated and the 
higher the operating costs. In addition, as the number of tons collected increases, it becomes necessary to adjust 
collection routes and frequencies, which generates additional costs and demonstrates the need to improve the 
management and planning of the waste collection process.

The amount of waste collected during an operation is a critical factor that significantly affects operational 
efficiency, waste management capacity, environmental impact, and financial costs. Figure 4 shows that on 
Mondays, Tuesdays, Thursdays, and Fridays, the variable with the greatest impact on the routes is the number 
of tons collected (x). A higher number of tons collected may indicate an efficient operation, but it may also 
require proper management to avoid negative environmental impacts and increases in operating costs. The high 
number of tons collected is indicative of its significance for overall efficiency.

On the other hand, the total number of kilometres (R1) travelled in the SWC process has significant operational, 
financial, and environmental implications. As this variable increases, as is the case on Wednesdays and Saturdays, 
operating costs tend to rise due to fuel consumption and vehicle maintenance.

In order to mitigate the impact of the collection process, the company would optimize collection routes, 
promote waste reduction at source through education and awareness, implement effective recycling programs, 
upgrade equipment to improve collection capacity, and adopt sustainable waste management practices.
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Figure 3. Simulation Histogram Results. 
Source: own elaboration.

Figure 4. Pearson sensitivity analysis for the six days. 
Source: own elaboration.

All variables are relevant to the methodological application. However, some variables have a greater impact 
on the established quality characteristics and compliance with specifications. Thus, it is possible to improve 
strategic decision-making to increase service quality based on scenario analysis of the uncertain behaviour of 
process variables. To verify the uncertain of the process variable a comparative analysis of the real error values 
for each day with the simulated errors was performed, showing a considerable decrease per day (see Table 4). 
These results will allow the waste collection company to define improvement actions that will allow them to 
find a balance between efficiency and sustainability in order to guarantee an effective and responsible collection 
process from an environmental point of view.
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4. Conclusions

Process optimization helps to improve strategic decision-making to reduce costs and improve efficiency, thus 
obtaining the highest possible profit. GP provides greater flexibility in process modelling and optimization when 
there are many variations of constraints and priorities of objectives in multi-objective problems. Furthermore, MCS 
allows for dealing with uncertainty and performing risk analysis by creating new models of possible outcomes 
by permuting a series of values.

The GoProMoS-SWC Methodology allowed a complete mapping of the optimal operating ranges of 
process and response variables, reducing total times by up to 55%. In addition, the computational efficiency 
in optimization and simulation models application is of great importance as it can affect both the accuracy of 
the results and the time required to obtain them and in the probabilistic estimation of the process capability 
to meet multiple quality characteristics.

This methodology integrates the main variables of the SWC process, including the number of trips, distance 
traveled, number of compactions, fuel consumption, and tons collected, in order to minimize the total process 
time. It is possible to define different types of routes in the daily operations and quantify their impact on the 
performance of the process.

This work makes a significant contribution by integrating a quality control approach into the modelling 
and simulation of the waste collection process. The utilization of process capability indices in the evaluation of 
collection process performance provides additional insights into the operational ability to meet targets, adjust to 
established ranges, and facilitate data-driven decision-making, thereby enhancing the efficiency of operations.

The case study showed that longer collection distances lead to higher operational costs, increased emissions, 
and longer collection times. While the amount of waste collected reflects efficiency, it is important to have 
effective management to avoid environmental and financial problems. To tackle these issues, it is crucial to 
focus on route optimization, using efficient vehicles, and strategic planning based on waste patterns.

This work impacts on Quality Engineering since processes or services optimization helps the continuous 
improvement of organizations through decision-making. The main contribution of this work is the implementation 
and validation of a flexible lexicographic model using optimization and simulation tools for the resolution of 
complex problems of product and process quality profiling, which seek to provide new knowledge, skills, and 
abilities in the current context of the fourth industrial revolution and Artificial Intelligence (AI).
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Appendix A. General selection of probability distributions that best-fit form 3.2.1.
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Appendix B. Selection of probability distributions that best-fit each variable data.


