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Abstract

Paper aims: This paper aims to develop a proper maintenance policy directly related to defining critical components for
ensuring a high level of safety and high-level in-service quality for all hydro generator units.

Originality: An innovative integrated tool that contributes to ensuing assertiveness in decision-making to determine the
critical components is presented in this study. Specifically, hydro-generator unit type Kaplan belonging to a Brazilian
Hydroelectric power plant is used as an application case to highlight the choice of the most suitable maintenance policy
in light of the proposed approach. The selection of the case study is based on the fact that hydroelectric power plants
are the basis of the Brazilian energy matrix, accounting for 75% of the demand in the country. Therefore, the need
to maintain hydroelectric plants’ availability and operational reliability is clear not to compromise the continuity and
conformity (quality) of the electrical energy supply.

Research method: Seven multi-criteria decision-making methods were applied in addition to two methods for deciding
weight (Critic Method and Entropy) have been compared to determine the critical components of the hydro-generator.
To investigate the robustness of the classification of the applied Multi-Criteria Decision Making approaches, a sensitivity
analysis was performed based on the weight change of each decision criterion.

Main findings: As a main result, the Entropy- Multi-Attribute Utility Theory model is proposed as the best approach
to guarantee the selection of critical components for the Brazilian hydroelectric power plant case study. The validation
sensitivity analysis by critical Fuzzy K-means groups guarantees that it is a robust tool for decision-making.

Implications for theory and practice: Ensuring the availability and reliability of hydroelectric plants can be achieved
by employing appropriate maintenance policies that reduce the likelihood of failure or even eliminate its root causes,
preventing failure from occurring. Consequently, a robust tool for decision-making regarding the Kaplan hydro generator’s
critical components’ monitoring was developed.
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1. Introduction and background

Maintenance management is one of the key points to determining the success of a company. The main
criticality in this sense is balancing contrasting objectives. This issue requires the use of Multi-Criteria Decision
Making techniques that can consider different criteria and assign different weights to them to define the most
suitable solution. Different multiple-criteria decision-making methods (MCDMs) can produce different results
in prioritizing the assets, not always coinciding. The application of MCDM includes features and characteristics,
including the following: objective, decision criteria, the orientation of each criterion and related weights,
alternatives, aggregation process, and standardization process. The results of ordering the alternatives are
affected by each of the mentioned items (Bevilacqua et al., 2000; Vafaei et al., 2018).

The literature review on MCDMs reflects several approaches, qualitative and quantitative, that apply
decision-making methods in the industrial area. Indeed, the maintenance function is strategic for the industrial
environment, as it directly influences the operational reliability and availability of industrial assets. Maintenance
decision-making is guided by several criteria with qualitative, quantitative, and mixed attributes, making it a
complex decision process.

1.1. Rationale behind the selection of the case study

Hydroelectric power plants (HPP) are the basis of the Brazilian energy matrix, accounting for 75% of the
demand in the country (Brasil, 2019). Modern life demands an increasing and perennial use of electric energy from
families. This requirement is also present in industries and services due to the automation and informatization
of processes. Maintenance of the energy supply is essential, focused on continuity and compliance. Therefore,
hydroelectric plants must be able to supply energy with higher quality and at a lower cost since the increase
in demand requires the production and transmission of electrical energy free from disturbances (Almeida &
Kagan, 2010).

Hydro generators are the main industrial assets in a hydroelectrical energy generation system. The occurrence
of failures in these hydro generators reduces efficiency and can stop energy generation. The unavailability of
the energy system demands high maintenance costs for the reestablishment of assets and fines imposed by
regulatory bodies, such as ANEEL (Brazilian Electrical Energy Regulatory Agency) in Brazil.

The availability and reliability of electrical energy generation systems can be maintained using appropriate
maintenance policies, making it possible to anticipate failures and eliminate their causes. Demanding the adoption
of assertive decisions on maintenance management of industrial assets, the decision-making method should
determine priority assets for monitoring, aiming to develop an effective maintenance policy that guarantees
high productivity levels while optimizing costs and resources.

1.2. MCDM applications to the industrial maintenance field

To contextualize the existing literary contributions dealing with MCDM approaches in the maintenance field,
a thorough literature review is carried out according to the steps reported in Table 1. Following this roadmap
is essential to highlight similarities and differences of the current work against extant ones.

Table 1. Steps followed for the literature review.

Step Activity Description
Database . S . N .
Step 1 definition Selection of the most complete paper source considering the theme under investigation: Web of Science
Analysis of all the possible keywords and their aggregation: “MCDM”; “MCDA”; “MADM”; “Multicriteria”;
“Multi criteria” ; “Multi-criteria”; “Multi objectiv*”; “Multi-objectiv*”; “Multi criteria decision”; “Multi-objectiv*
optim*”; “Selecting”; “Comparative”; “Comparison”; “Comparation”; “Sensitivit*”; “Evaluation”; “Robustness”;
Keyword "Evaluating”; “Priorization”; “Sensitiv* Analys*”; “Uncertaint* output of a mathematical models*”; “K-means”; “K
Step 2 L. . - - . . . o
definition means”; “Fuzzy K-means”; “Fuzzy K means”; “Fuzzy C-means”; “Fuzzy C means”; “Cluster*”; “Fuzzy cluster*”;
“Maintenance*”; “Industr*”; “Machin*”; “Equip*”; “Hydroeletric*”; “Hydro Power”; “Hydro Power System*”; “Hydro
Power Generation*”; “Eletric* Power Generation”; “Eletric* Power System*”; “Industr*”; “Machin*”; “Equip*”;
“Maintenance”
Language
Step 3 Filtering & 103 paper identified after the filtering application

Abstract analysis
Step 4  Full-text analysis 43 papers considered relevant to the literature review of this study.
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Maintenance policies cover a fundamental role in the definition of the company’s success. However, contrasting
objectives have to be considered, enabling the spreading of MCDM approaches application (Ruschel et al.,
2017). In this sense, MCDM techniques can be used for selecting the optimal mix in terms of maintenance
policy application. For example, the fuzzy Analytic Hierarchy Process (AHP) and Goal Programming have been
successfully implemented to this end by Ghosh & Roy (2009). Additionally, AHP, graph theory, and TOPSIS are
successively applied to prioritize items from a green maintenance perspective, considering environmental aspects,
like environmental compatibility, energy efficiency, and human health (Ajukumar & Gandhi, 2013). The same
techniques and the Performance Selection Index (PSI) have been used to improve the setup times, considering
factors like cost, energy, facility layout, safety, life, quality, and maintenance required by the equipment
(Almomani et al., 2013). Fuzzy AHP, TOPSIS, and grey relational analysis can also be applied to select the best
maintenance policy among a set of alternatives (i.e., predictive, time-based, condition-based, or corrective)
according to different criteria, such as safety, cost, the added value of the activity and feasibility (Kirubakaran &
Tlangkumaran, 2016). Carnero (2014), instead, proposes a model to assess the state of maintenance of a company
based on benchmark parameters identified through Monte Carlo simulation and fuzzy AHP. Fuzzy AHP and
fuzzy VIKOR can also be combined to eliminate the failure effects on gas turbine (Balin et al., 2016), controlling
elements like hydraulic-pneumatic, electronic control, and bearing equipment. As shown by Martin et al. (2019),
a maintenance strategy’s efficiency should be assessed both in practical and economic terms. The company’s
maintenance strategy portfolio is evaluated using the analytic hierarchy constant sum method to identify the
more convenient policies in their work.

The optimum replacement intervals for the equipment can also be defined through MCDM techniques.
For instance, Emovon et al. (2017) proposed an approach based on TOPSIS and compromise weighting technique,
a combination of variance method and AHP. The same problem can be addressed, as presented by Abdelhadi
(2018), by implementing the group technology - to cluster similar machines- and PROMETHEE, responsible for
the ranking of their importance, to schedule the preventive interventions. Similarly, Pérez-Dominguez et al. (2018)
apply the Multi-objective Optimisation based on Ratio Analysis to evaluate injection machines’ maintenance to
improve their product performance, also providing a comparison with TOPSIS to assess the superior performance
of the adopted approach. In addition, Soltanali et al. (2019) implement the Multi-Attribute Utility Theory (MAUT)
methodology to determine the best trade-off among the considered attribute (cost, reliability, and availability) in
defining the optimal maintenance strategy. Carnero (2017) proposes an AHP-MAUT to assess the performance
in terms of maintenance effectiveness, comparing different periods.

In an industry 4.0 environment, MCDM approaches can be combined with machine learning algorithms
to improve maintenance intervention. For example, as presented by Lima et al. (2019), an algorithm based on
Bayesian Networks and Attribute Ranking Algorithm can be used to estimate the machines more susceptible
to failures. At the same time, the AHP is applied to prioritize them. Even bio-inspired algorithms, e.g., artificial
bee colony, genetic algorithm, and particle swarm optimization, can be integrated into the traditional MCDM
approaches and applied to evaluate the equipment maintenance performance (Zhang et al., 2019).

Lo et al. (2019) instead, propose a comparison among the Best-Worst Methodology (BWM) and TOPSIS in
the risk assessment process applied to the failure modes and effects analysis, identifying the former technique
as more consistent and efficient. Additionally, AHP can be integrated with the election based on relative value
distance to prioritize the failure modes determined by the domain experts (Gugaliya et al., 2019). In a similar
perspective, MAUT is proposed by Bertolini & Bevilacqua (2006) as a technique to define a more precise risk
priority number for the potential failure modes of a production plant.

Among the others, the hydroelectrical industry’s maintenance policies have been frequently analyzed by
implementing MCDM approaches. The evaluation of some small hydroelectric plants has been carried out by
Kumar & Singal (2015) using the AHP, taking into account several attributes like generation, operating and
maintenance costs, shortage of generation, and percentage variation in a generation. In Ozcan et al. (2017),
instead, three techniques, namely TOPSIS, AHP, and Goal Programming, are applied to select the best maintenance
strategy in hydro-electrical power plants, as well as Markov chains (Carnero & Gomez, 2017). Even metaheuristics
have been used for preventive maintenance scheduling in this field (Umamaheswari et al., 2018). Emovon &

Samuel (2017), instead, have prioritized the solution methodologies for issues in a hydroelectric plant through
a MAUT-based analysis.

1.3. Types of sensitivity analysis and the consistency of decision-making processes

Some of the papers analyzed in this literature review perform a sensitivity analysis to assess the robustness
of the solution. They are reported in Table 2, compared to the techniques and sensitivity tests performed in
this work.
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Table 2. Sensitivity Analysis Application (Case study).

Paper Techniques applied Sensitivity test
Ghosh & Roy (2009) Fuzzy AHP and Goal Programming Casual weights modification
Almomani et al. (2013) AHP, PSI, and TOPSIS Weights increased by a fixed percentage
Balin et al. (2016) AHP and VIKOR Weights vary from 0 to 1, step 0.1
Emovon et al. (2017)  TOPSIS Weights modified of +/- 5% to +/- 20%, step 5%
Lo et al. (2019) TOPSIS and BWM Weights vary from 0 to 1, step 0.1
Carnero & Gomez Measuring Attractiveness by a Categorical Based Weidhts continuous variation
(2017) Evaluation Technique and Markov Chains g
}ergiag;aheswan etal. Fuzzy decision making + metaheuristics Casual weights modification
Carnero (2017) Fuzzy AHP and MAUT Weights modified of +/- 5%
This work EA(?FI,J]:A;AKOR' TOPSIS, PROMETHEE, EDAS, WASPAS, Weights are modified until the ranking changes

For the application of the MCDMs, weights are added to the decision criteria that show each criterion’s
potential in the final classification. The assignment of weights to the criteria can be made by decision-makers
(experts) when the tacit knowledge of the phenomenon is deep and able to assign consistent weight to the
variables that drive the final decision. 1t can also be done by applying mathematical methods for determining
weights when there is a history of reliable data that allows the use of these techniques. In this research, two
methods for criterion (attributes) weight determination were applied: The Critic Method (CM) and Entropy.

The Critic Method (CM) is used for determining criteria’s weights for the structure of the decision-making
problem and was proposed by Diakoulaki et al. (1995). This method evaluates the criteria’s importance by
inter-critical correlation, using correlation analysis to discover the contrasts between the criteria: the decision
matrix is evaluated, and the standard deviation of the criteria values is normalized by columns. The correlation
coefficients of all pairs of columns are used to determine the contrast of the criteria (Diakoulaki et al., 1995;
Madi¢ & Radovanovié, 2015).

The entropy method is used for determining the criteria’s weights (attributes). 1t is linear programming
for multidimensional analysis of preference, weighted least square, and eigenvector methods. 1t is based on a
decision matrix, whereas weighted least square and eigenvector methods follow a set of judgment-based pair-
wise comparisons (Salehi et al., 2020; Shahmardan & Hendijani Zadeh, 2013).

Entropy is an objective weighting method that can overcome the shortage of subjective weighting methods.
The technique is based solely on neutral data, increasing the reliability and accuracy of the final ranking of the
MCDMs application (Salehi et al., 2020; Shahmardan & Hendijani Zadeh, 2013).

1.4. Clustering of data using fuzzy K-means

Clusterization can be useful to create groups of similar items and schedule the maintenance policies accordingly.
Following this approach, Rastegari & Mobin (2016) have used fuzzy clustering to classify the machinery ranked
through the application of the TOPSIS to select the most appropriate maintenance policy. Pursuing the same
objective, Mousavi et al. (2009) used factor analysis for group creation and TOPSIS for the maintenance strategy
selection. Azadeh et al. (2017) propose a k-means approach to cluster similar items and, then, through the data
envelopment analysis and AHP, they assess the resilience of the maintenance operations. Sadeghpour et al.
(2019) address the problem of component replacement by clustering similar machines and formulating a multi-
objective mathematical model - then solved through a genetic algorithm. Similarly, Kammoun & Rezg (2018)
adopt clustering and integer linear programming to define the cluster of machines to be maintained depending
on their degradation level; furthermore, they use the Apriori algorithm to mine information on the maintenance
sequences frequently performed.

Other authors use clustering and other techniques: an example is the combined use of artificial neural networks
and k-nearest neighbors to diagnose the failures of induction motors (Drakaki et al., 2020) and predict them to
reduce the maintenance costs (Abdelhadi et al., 2015). In Goh et al. (2012) and FrieB et al. (2018, 2019), k-means
and fuzzy k-means are applied with artificial neural networks for fault detection and condition monitoring, while
another application regards the introduction of k-means clustering and threshold correction for predicting the
remaining useful life (Wang et al., 2020). In Langone et al. (2015), the least squares support vector machine
technique is applied based on spectral clustering and regression to anticipate the need for maintenance during
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the normal functioning of industrial machines. Chinnam & Baruah (2009), instead, integrate the clustering to
hidden Markov models to perform condition-based maintenance to enhance the maintenance autonomy of
the system. A further application consists of using the C-means and the Gaussian Mixture model to observe the
operations of a machine in real-time: the aim is to define the degradation severity and assess the necessity for
a predictive intervention (Dasuki Yusoff et al., 2019).

Fuzzy clustering can also be applied to define a low carbon evaluation method for product manufacture and
maintenance (Dong & Bi, 2020) or to monitor the oil status to predict machinery failures (Yanchun et al., 2010).
Fuzzy k-means and adaptive neuro-fuzzy inference have also been applied to predict a distillation column’s
remaining useful life in the chemical industry (Daher et al., 2020). K-means clustering on its own has also been
used for the predictive maintenance of a wafer transfer robot (Kim et al., 2019). Amruthnath & Gupta (2018)
proposed a comparison among different clustering approaches, namely hierarchical clustering, k-means, and
fuzzy k-means, to compare their performance in terms of fault prediction and select the best model. The same
approach is followed by Di Maio et al. (2012), which compares the fuzzy k-means and the hierarchical clustering
to assess oil and sand pumps’ wear status.

The study proposed in the present work aims to contribute to the literature by comparing the effects
of prioritization of critical components used in electrical energy generation systems with the application of
MCDWMs of different classifications (aggregation, outranking, and elementary methods) applied with two types
of methods for weight determination (Entropy and Critic Methods). The literature review reflects qualitative
and quantitative approaches that apply decision-making methods in the industrial area. They are deficient in
the following areas: in applying tools to determine the appropriate decision-making process; in the validation
of sensitivity analysis; in the use of clustering tools in industrial maintenance management; and mainly in the
application of decision-making in the hydroelectric sector.

Finally, the most important and innovative part of this study is applying the Fuzzy K-means tool to validate
the sensitivity analysis of the optimum decision-making assembly (MCDM and weight determination method
for criteria). A robust tool for decision-making regarding the monitoring of the critical components of the
Kaplan hydro generator is developed, which affects the performance of the electrical energy generation system.

1.5. Research gap and novelty identification

Although the existing research is valuable, they are deficient in the following areas: in the validation of
sensitivity analysis, the use of clustering tools in industrial maintenance management, and mainly in the
application of decision-making in the hydroelectric sector.

Such factors motivated the realization of this research with the application to a case study to clarify how
this approach can be implemented in real problems.

The method proposed in this work is based on the confrontation of the sensitivity analysis technique (applied
to the combination of MCDM and Weight determination method), the result of clustering (Fuzzy K-means) of
the components of the Kaplan hydro generator. Based on operation and maintenance indicators, this clustering
segregates the components into groups according to their criticality. The components’ criticality is determined
by the adherence (similarities) of the clusters’ components with the ranking of the optimal decision-making
process. Thus, this method can determine with excellence the main components for maintenance control in
complex systems. In this work, a decision-making process has been proposed to assertively prioritize the critical
components of a Kaplan hydro generator unit. The identification of critical components aims to improve preventive
maintenance systems and predictive monitoring of the energy generation system for the availability and quality
of the supply of electrical energy to society. However, the results presented in this work are representative of the
case study: applications to different real-life problems will indeed have a different set of critical components.

This study also aims to contribute to the literature by comparing the effects of prioritization of critical
components used in electrical energy generation systems with the application of MCDMs of different classifications
(aggregation, outranking, and elementary methods) applied with two types of methods for weight determination
(Entropy and Critic Methods).

The rest of the article is structured as follows. Section 2 details the proposed method for determining the
best decision-making process (a combination of MCDM and weight determination method) to identify critical
components. The case study on a Kaplan hydro generator is presented in Section 3. In section 4, the results
obtained by applying the decision-making method are discussed with the comparison between the sensitivity
analysis and the similarities between the groups of assets grouped by the Fuzzy K-means. Finally, in Section 5,
the conclusion of the research and application results is described.
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2. Robust tool for determining critical components for maintenance monitoring

In this work, a robust tool for decision-making has been developed. The aim is to determine the optimal
combination between the Multiple-Criteria Decision-Making methods (MCDMs) and methods for determining
the weight of the criteria, i.e., for establishing a decision-making process that is more consistent in sorting the
critical components of the system under investigation and prioritizing maintenance actions.

The tool requires confronting the sensitivity analysis technique (applied to decision-making methods) with
the result of clustering (Fuzzy K- means) of the components in groups that present critical indicators concerning
maintenance actions and operation. The method is divided into four stages, according to Figure 1.

A robust tool for determining critical components for maintenance monitoring

Step 2

MCDM types:
Aggregated MCDMs methods
Outranking methods
Elementary methods

O&M (Maintenance and Operational)
indicators

Apply MCDMs methods for determining the weight
coefficients of decision criteria

Structure and calculate O&M
performance indicators for
industrial assets

Determine decision criteria weights
using the O&M indicators values

present in the industrial process (components
ranking to prioritize maintenance tasks execution
and preventive plans development)

1
i
i
| | Use MCDMSs to determine the critical components
H
1
i
|

components. It helps maintenance managers
to select a robust maintenance policy and to
priontize the assets maintenance assistance.

Step 4

prioritize critical components).

i i
i |

‘ ;

Results obtained: i Apply the clustering tool in the validation Apply sensitivity analysis to determine the i
Critical components ranking ! process of the Best decision-making process !
! sensitivity analysis ( chosen MICDM ) !

3 1

The be‘“ decxslon-mal-cing process i i Fuzzy K-means is used to verify the stability of the Criteria weight variation is applied to |
established to determine the eritical i proposed decision-making process (optumal MCDM to develop the sensitivity analysis process i

i i

! |

| |

i |

| |

i i

Step 3

O&M: Maintenance and Operational indicators / MCDM: Multicriteria decision-making method

Figure 1. Robust tool for determining critical components for maintenance monitoring.

Step 1: In this step, performance indicators for maintenance, operation, environmental, and work safety risks
are determined, together with the survey of the respective values. These values can be obtained from company
databases containing information on failure analysis treatment, technical service orders, and maintenance history
or can be acquired from public repositories. The maintenance indicators are structured as criteria for modeling
the decision-making process. The weight of each indicator must be determined in the final decision of the
prioritization of the critical components. Therefore, the CM and Entropy methods were applied to determine
the weight of the structured criteria (performance indicators).

Step 2: In this step, multiple-criteria decision-making methods of different families (aggregation methods,
elementary methods, and outranking) are applied to analyze the behavior of the final ordering of the system
under investigation.

Decision support methods are complex because they involve several criteria for decision-making most of the
time. These methods can guide decision-makers towards optimal alternatives through the result of different
mathematical models. This study applies seven MCDMs: COPRAS, VIKOR, PROMETHEE 11, EDAS, TOPSIS, MAUT,
and WASPAS. Below, a brief description of each MCDM is proposed, referencing the relevant literature on the
topic for an extensive discussion and explanation.

The MAUT aims to solve decision problems by maximizing the utility function. The utility function is
structured by a set of criteria, which reflect the decision maker’s preferences. In this function, a utility value is
added to each consequence (attribute) of an action on a given problem to identify its best result, calculating
the best possible utility (maximum values) (Almeida, 2012; Nikou & Klotz, 2014; Wang et al., 2010).
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The WASPAS (Weighted Aggregated Sum Product Assessment) is an elementary multi-criteria method. This
MCDM was developed by combining the Simple additive weighting (SAW) and Weighted Product Model (WPM)
(Chakraborty & Zavadskas, 2014; Zavadskas et al., 2013).

The evaluation Based on the Distance from Average Solution (EDAS) method is characterized by calculating
each alternative’s distance from the optimal value for choosing the best solution, related to the distance from
average solution (AV) (Ghorabaee et al., 2015; Siksnelyte-Butkiene et al., 2020).

The multi-criteria decision analysis TOPSIS (Technique for Order Preference by Similarity to 1deal Solutions)
is based on calculating the Euclidean distance to evaluate the distance between the ideal positive and negative
solutions (Bertolini et al., 2020; Kirubakaran & llangkumaran, 2016).

The VIKOR (Multi-Criteria Optimization and Compromise Solution) method aims to solve decision problems
through a trade-off solution. The classification results are presented by comparing each alternative with the
ideal solution in light of the best compromise (Alinezhad & Esfandiari, 2012; Opricovic & Tzeng, 2004).

The Complex Proportional Assessment of alternatives (COPRAS) method prioritizes alternatives and the
criteria weights association. This method establishes alternative ranking according to each one’s degree of utility,
considering them as 1deal Solutions (+) and Worst solutions (-) (Stefano et al., 2015; Edmundas Kazimieras
Zavadskas et al., 2008).

The Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) is the outranking
and non-compensatory method. Its preference function is associated with each criterion, with the weights
describing their relative importance (Abdelhadi, 2018; Brans & De Smet, 2016).

For each decision-making method applied in the study, the weights for criteria generated by the Critic
method (CM) and Entropy were tested, allowing more options for optimal combinations in determining the
decision-making process.

Step 3: In this step, the sensitivity analysis method is applied to verify the stability of the proposed decision-
making process (an optimal combination of the MCDM and criterion weight determination method) and validate
the sensitivity analysis by comparing the grouping of critical components. The sensitivity analysis by varying the
criteria weights were applied to observe changes in the classification obtained by each MCDM.

MCDMs have criteria, weights, and priorities in their structure, which can associate uncertainties with the
results obtained. These uncertainties can be identified and assessed through sensitivity analysis to determine the
solutions’ robustness in the decision-making process. A sensitivity analysis must be performed to investigate the
criteria weights’ effect on the multi-criteria decision methods results. In this way, these weights’ effect on the
final results (alternatives prioritization) is investigated. A further reason for performing a sensitivity analysis is to
validate the feasibility and verify the performance’s robustness of the decision-making process structure. Indeed,
robustness indicates a system’s ability to tolerate uncontrollable changes in its inputs (Saaty & Ergu, 2015).

The robustness of the decision-making process is determined when it supports more significant variation
in the criteria weights without changing the final classification of the alternatives. For validation of sensitivity
analysis, the system components are classified by using Fuzzy K-means. The groups are formed according to
the criticalities evidenced by the operation and maintenance indicators. The Fuzzy K-means method is based
on the following three phases (Liu et al., 2020; Pal et al., 2005; Xu et al., 2016).

Phase I- Fuzzy K-means (FKM), or Fuzzy c-means (FCM), is a clustering (grouping) technique that allows data
to belong to two or more clusters; it is often applied in pattern recognition. The idea is basically that the set
X = {xw, Xyy v xn} is divided into C clusters; the grouping result is expressed by the degree of membership in the
p matrix. The FKM algorithm divides data into sets, minimizing the objective function shown in Equation 1:

C

N
)3

i=l j=1

x,»—chz ,1<m<oo (1)

where: J,, = loss function; m (fuzzification parameter) is any real number greater than 1 and an appropriate level
of cluster fuzziness; uy is the degree of membership of x in the cluster j, x is the jth of d-dimensional measured
data; G is the d-dimension center of the cluster; Cis the number of clusters considered in the algorithm, which
must be decided before the execution; and ||*|| is any norm expressing the similarity between any measured
data and the center.
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Phase II- To develop the fuzzy partitioning must be an iterative optimization of the objective function J,, with
the update of membership u; and the cluster centers ¢ Therefore, the algorithm must satisfy the following
conditions:

uj €[0,1],1<i<N1<;j<C

C N
[a) Zulj =1 ,ZMU >0
Jj=1 i=1

(b) To minimize, using a Lagrangian multiplier, the equation J,,,. A point is considered to be a local minimum
solution of J,, if and only if (Equations 2 and 3):

1
YpE———— 1

C (dyYm1 (2)
Zs:l Z

N m
GV Gl

ul

Zi:l v

Phase 11I- The iterative algorithm is interrupted when (Equation 4):

here: ’
whnere: dlj :H)Cl‘*CjH

(1) _ (1)

Hij ij

<z (4)

max

where: ¢ is a small positive integer, and ¢ denotes the number of iterations.

With the allocation of the components to their respective groups, it is possible to calculate the groups’
similarity in the ranking obtained by the optimal decision-making process. The robustness of choice lies in the
greater similarity of the decision-making process with the most critical group.

The use of the Fuzzy K-means clustering method is encouraged by the scarcity of its application in the
decision-making of industrial processes to analyze its benefits in the decision-making in maintenance management.

Step 4: The critical components obtained by the final classification of the decision-making process are presented,
determined by the robust sensitivity analysis tool confronted by the Fuzzy K-means clustering. The result aims
to develop a robust decision-making tool to identify the most critical components of the industrial assets, which
need a stricter control of preventive and predictive maintenance.

3. A case study: hydro generator Kaplan type

The objective of the proposed method is to identify the most critical components of a hydro generator
installed in a hydroelectric power plant to prioritize maintenance and improvement actions. The application of
the robust tool for decision-making in the HPP case study is detailed as follows.

3.1. Description of the production system

Hydroelectric is one of the industrial processes that require extreme availability and reliability. This is due
to its importance in the development of today’s society and the risks involved in the production process (which
may affect the integrity and personal assets).

The proposed robust tool for decision-making was applied in a study carried out for a run-of-river baseload
hydroelectric power plant (HPP) situated in the southeast region of Brazil. This HPP has three hydro generators
type Kaplan units, which operate 166.25 MW each (with an installed capacity of approximately 500 MW).

Kaplan hydro generator units are designed to operate where a small head of water is involved; its turbines
can be used in sites having a typical head range of 2-40 meters. The turbine’s angle (or pitch) of the blades
can be altered to suit the water flow. Kaplan turbines’ adjustable pitch feature allows these types of turbines
to operate efficiently at a broader range of water heads, allowing for variations in the dam’s water level. Hydro
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generator Kaplan unit can be divided into three principal systems: Speed governor, Turbine system, and Axis.
Figure 2 illustrates the functional turbine tree.

Hydro
Generator
Governor

Coupling = - " = Turbine
Elements T""_b'"e Adjustable Guide | | . Dfscharge Control RAECLaRIEH
Spiral Vanes System Ring Gate
Casing
Kaplan Bushing Head Kaplan
Head r Mechanism

Wicket [Upper} Lower
Gates Ring Ring
Connecting Blade

Rod Trunnion

Runner
(Cone/
Ogive)

des

Figure 2. Partial functional tree (FT) of hydro generator Kaplan unit (mechanicals elements).

The functional tree (FT) presents, in a systematic approach, the interrelationships between the components of
the given system. Its structure shows, logically and hierarchically, the interdependence between the components
of a system to expose how each one performs its functions.

3.2. Application of decision model and data

In Figure 3, the general framework proposed in section 2 is adapted to the case study of the Kaplan Hydro
generator object of the current study.

According to the four steps of the proposed approach, the analysis is carried out as follows:

In step 1, performance indicators of the current case study are obtained from the hydroelectricity generators
databases: they contain all the useful information on failure analysis treatment, technical service orders, and
maintenance history. The maintenance indicators are structured as criteria in the modeling of the decision-
making process. The weight of each indicator is calculated in the final decision on the prioritization of turbine
components by applying the CM and Entropy methods.

The Kaplan hydro-generator object of the study has 152 components in its structure, which are distributed in
three main systems present in the functional tree. In the event of simultaneous component failures, maintenance
service (technical assistance) should be prioritized to reestablish the functioning of the components, depending on
the criticality. The critical component is that which, in a failed state, presents a greater risk of total interruption
or reduced performance of the power generation system. The Table in Appendix A shows the component’s
operational indicators, which are the database for applying the proposed method.

Step 2, in addition to determining the criticality of the components for maintenance service, it is important
to establish preventive and predictive measures to prevent failures. Thus, the following MCDMs were applied:
COPRAS, VIKOR, PROMETHEE 11, EDAS, TOPSIS, MAUT, and WASPAS. They aim to establish the appropriate
criticality of each component. The criteria of the decision-making process under study are presented in Figure 4.

In the CM (Critic Method) and Entropy methods, weights were obtained for each decision criteria (C).
Table 3 presents the weights of the criteria involved in the decision-making process.
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Figure 3. Developed robust tool applied to Kaplan hydro generator.
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Figure 4. Criteria hierarchical structure to determine the criticality of Kaplan hydro generator unit components (CP).

Table 3. Weight results.

Criteria (C) c, C, C, c, C, C, C, C, C,
Entropy 0.1867 0.1112 0.0832 0.1480 0.0763 0.0528 0.0458 0.1113 0.1848
™M 0.1235 0.1159 0.0656 0.0710 0.1232 0.0979 0.1342 0.1693 0.0992

With the weights of the decision criteria determined, seven MCDMs were applied to determine the criticality
of the components of the hydro-generator unit. Multicriteria decision-making methods come from different
families (outranking, elementary, and aggregation), aiming at verifying the variation in the criticality of the
components. All MCDMs were developed in combination with the weights obtained by the CM and Entropy
methods. Table 4 shows the results of the applied methods, showing the ten most critical components.

In step 3, the Kaplan hydro generator unit components’ final classification is different in each result obtained
with the MCDMs application. A sensitivity analysis was applied to determine the optimal combination of the
MCDM aggregate to the criteria weight determination method, considering variations in each criterion’s scores
to verify the proposed methods’ robustness.

Specifically, the solution’s sensitivity was tested by increasing each criterion’s weight until the prioritization
of the components remained unchanged. The other criteria’ weights were contextually reduced not to violate the
condition that their sum should be 1. For example, Table 5 shows that in WASPAS method C, can be increased
to 7% before modifying the solution. In the VIKOR method, instead, even a slight change (0.10%) causes an
alteration of the prioritization.

Sensitivity analysis tests the effects of uncertainty in the output of a decision process, which is influenced
by uncertainty in its inputs. 1t allows to determine the most assertive decision-making method or to choose the
method that presents the best resistance to the variation of the weights of the decision criteria. Tables 5 and 6 show
the sensitivity analysis results applied to MCDMs.

The sensitivity analysis highlights that Entropy-MAUT is the most assertive decision-making process for
prioritizing the hydro-generator unit’s critical components. The MAUT classification method added to the
Entropy method form a robust decision-making process. Indeed, they present better resistance to changing the
results (final classification of the components) when the weight variation occurs. This means that the sensitivity
in modifying the final classification is lower because it supports a greater variation (percentage) of the criteria
weights.

On average, the Entropy-MAUT combination stands a variation of 20.56% of the weights that are applied to
the decision criteria without changing the final prioritization of the criticality of the components. 1t represents
a higher percentage of resistance to variation in weights (criteria) than the other combinations of decision
methods presented in Table 5.

Based on Nikou & Klotz (2014), Almeida (2012), Wang et al. (2010), was applied an Entropy-MAUT method
approach, and it can be summarised in the following steps shown in Figure 5.
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Table 5. Sensitivity Analysis Results Applied to Entropy and MCDMs Combination.

Method Multi-Criteria Decision-Making Methods (MCDM)
for criteria Criteria (C) PROMETHEE
o WASPAS MAUT VIKOR COPRAS TOPSIS W EDAS
CI 7.00% 1.00% 0.10% 0.45% 0.15% 0.95% 0.25%
Cz 5.00% 100% 0.50% 0.55% 0.45% 0.15% 0.40%
Cz 2.00% 2.00% 0.50% 0.20% 1.00% 3.50% 0.05%
C4 2.00% 0.50% 0.50% 1.00% 0.25% 0.85% 0.85%
Entropy Cr’ 3.00% 22.00% 1.00% 0.70% 1.50% 0.05% 3.00%
Ce 3.00% 11.00% 0.25% 1.50% 1.50% 0.08% 9.55%
C7 3.00% 5.00% 0.15% 0.90% 1.50% 4.50% 3.50%
C8 1.00% 43.00% 1.00% 1.50% 0.50% 0.80% 1.00%
Cg 5.00% 0.50% 0.25% 0.045% 0.20% 0.06% 0.05%
Average 3.44% 20.56% 0.47% 0.76% 0.78% 1.22% 2.07%

Table 6. Sensitivity Analysis Results Applied to Critic Method (CM) and MCDMs Combination.

Method Multi-Criteria Decision-Making Methods (MCDM)
fo‘:,:i';]tﬁ?a criteria @ aseas MAUT VIKOR COPRAS TOPSIS PROM]]]ETHEE EDAS
C, 3.00% 1.00% 0.2500 1.5000 0.05% 0.03% 1.00%
c, 15000 100% 0.10% 0.10% 0.05% 0.060% 0.1500
c, 1.00% 1.00% 1.500 3.00% 0.50% 0.06% 0.5500
3 c, 1.00% 0.5000 1.00% 3.0000 0.2000 0.09% 0.65%
Cm‘t%r(‘)zc C, 1.00% 8.00% 0.03% 0.4000 0,350 0.03% 1,500
c, 0.5000 0.500 0.030 0.450% 0,75% 0.03% 0.2500
c, 0.500 18.00% 0.10% 0.85% 0.01% 1.5000 0.2500
C, 25.00% 11.00% 1.50% 0.3000 0.3000 2.5000 0.150%
c, 0.50% 0.50% 0.250 0.2500 0.200 0.25% 0.20%
Average 3.78% 15.61% 0.5300 1.09% 0.27% 0.51% 0.5200

The hybrid Entropy-MAUT decision method effectively increases the reliability and accuracy of the Kaplan
hydro generator unity critical components. Table 7 shows the ten principal components (ten topmost critical)
of the Kaplan Unit Hydro generator.

Table 7. Kaplan Unit Hydro generator the Topmost Critical Components.

1dentification Code in the Tree

Entropy-MAUT Ranking Functional System Component
1 5.2.1 Speed Governor Kaplan Head
2 5.2.2 Speed Governor Bushing Head
3 3.3 Shaft Coupling Elements
4 4.3 Turbine Turbine Spiral Casing
5 4.2 Turbine Penstock
6 4.5.1 Turbine Adjustable Guide Vanes System
7 4.6.3 Turbine Runner (Cone/Ogive)
8 4.6.1 Turbine Hub
9 5.2.3.5 Speed Governor Runner Blade Trunnion
10 4.8 Turbine Discharge Ring

In the decision-making process with multi-criteria evaluation, the results are inevitably associated with
various uncertainties caused by its components: criteria, weights, and priorities. These uncertainties can be
identified and evaluated through a method aiming to determine the robustness of the strategies proposed in
the decision-making process.

The proposed method is based on the validation of the sensitivity analysis, which verifies the robustness
of the decision methods regarding the variation of the weights of the decision criteria. The validation process
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Step 1 - The decision matrix is structured with
determination of the altematives and criteria (attributes)
values.

Phase I - The decision matrix is, therefore,
normalized by the equation :

Phase I - The entropy value is obtained by D
equation:

1 m .
E= *mz, Pl Py j=

Step 2 - The weights of the criteria are obtained (indicators
of ma i i I and safety risks). Phase IIT - The amount of per criteria’s dispersal

is obtained by the equation:

In this study criteria weights are obtained by the Entropy
weighting methods Equations™*' as shown in phases LIL IIL
e D=1-Ej=1
y=1-Ej=1...,n

D; is the measures the degree of deviation of
essential information for the ju, critério, or be,
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w, is the importance weight of the jy, cri'etia/

Equation for Nomalization Data

Ty =ay * wy
Step 3 - In this study, the normalization weighted technique
‘was applied. and its value is obtained by the equation: rj are the normalized criteria values
determined from single-attribute utility

functions;
ajjare the aftributes ;
ware the criteria weight

Step 4 - Integration of utility of each altemative : Function Utility
UCA) =21y
In this study. the function utility model structured is the sum ( ‘) z iy
of the single utility functions multiplied by a scaling constant P o
(criteria weight), that reflects the importance of each objective Hihy denstec e utility.of llemative
‘within the decision process.

Step 5 - Final ranking.
The decision makers should consider the altemative with the
highest integrated utility value.
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Kaplan Unit Hydro generator Critical Components:
Results by Maximum Value

e
|

Figure 5. Entropy-MAUT method structure.
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is based on the application of the Fuzzy K-means (FKM) tool in the grouping of the Kaplan hydro generator
components in clusters. Figure 6 shows the grouping of the hydro-generator components into six groups (K = 6).

To validate the sensitivity analysis, the clustering tool Fuzzy K-means (FKM) was applied. The clustering process
grouped the components of the Kaplan hydro-generator unit into six clusters. The groups were formed according
to each cluster’s criticality, which is determined by the indicators of maintenance, operation, environmental risk,
and safety (the same ones used in the application of the Entropy-MAUT method.

The K, cluster presents the most critical components of the performance indicators evaluated; these
components are the same ones (Topmost components) in the first classification positions of the Entropy-MAUT
decision-making process. Thus, this method can excellently determine the leading equipment for maintenance
control in complex systems.

Clustermng Fesult Kaplas Head
Bushing Head
Coupling Elements
Tuarkine Spiral Casing
Penstock
Adjustable Guide Vanes System
Rusmner (Cone/'Ogive)
Hub
Fumner Blade Tnmnion
Drischarge Ring

LI T T
(N 1]
-

K

Figure 6. Critical Components FKM results.

4. Case study’s results and discussion

In this section, the results obtained with the application of the optimal decision-making process Entropy-
MAUT are discussed, with the comparison between the sensitivity analysis and the similarities of the groups
(clusters) formed by the Fuzzy K-means.

In this work, sensitivity analysis (by varying the weights of the decision criteria) was applied to validate the
stability and precision of the results of seven MCDMs. These multi-criteria methods were applied to determine
the criticality of the components of the Kaplan hydro-generator unit. The optimal combination of Entropy-MAUT
was endorsed for presenting less sensitivity in response to the variation of the weights of the decision criteria,
maintaining its final classification with an average deviation of up to 20.56% of the weights.

Data and models can be validated using several techniques and tools. The sensitivity analysis was validated
using quantitative methods, comparing the critical components’ ordering with the similarities of the Kaplan
hydro-generator groups of components formed by the clustering process.

The separation of the Kaplan hydro generator unit components occurred through the application of the
Fuzzy K-means tool (FKM or FCM). Figure 7 shows the formation and analysis of the six clusters formed.

A set of database criteria (performance indicators) is established, and a Fuzzy K-means clustering tool is
applied to form the component groups of the Kaplan hydro generator unit. Due to the particularities of the
components’ operation and maintenance functions, six clusters were determined to group the components.
The Table in Appendix B shows the clustering of the components and the criticality obtained by the application
method Entropy-MAUT.

Subsequently, clusters are validated, verifying each cluster’s internal homogeneity (similar mutual criteria
and standards). This assessment aims to provide the decision-maker with reliability about the results obtained
from the clustering algorithm used. The homogeneity check is analyzed by the proximity of each element in
each cluster center. Table 8 shows the centers of the six clusters.

It appears that the K, cluster is the most critical of the indicators of maintenance, operation, and risk
(environmental and safety), as it shows the longest average time to repair (31.36 hours) and the highest value
for risks of the operation, maintainability, personal safety, among others.
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Table 8. Ki centers.
Clusters (K) Centers

Criteria (Ci) ” ” ” ” ” ”
1 2 3 4 5 6

C1 2.128 1.086 6.239 31.365 5.129 31.365
CZ 9.67e-06 9.40e-06 3.94e-06 4.27e-06 7.89e-06 3.12e-06
C3 0.871 0.835 1.775 2.279 0.610 2.903
C4 2.417 2.604 21.313 16.215 1.431 32.901
C5 0.168 0.182 0.686 0.686 0.195 0.686
CB 0.095 0.103 0.220 0.276 0.059 0.190
C7 0.076 0.079 0.076 0.106 0.071 0.046
C8 0.037 0.051 0.111 0.1 0.056 0.111
C, 31.835 3.234 4.558 2.905 2.751 11.236

o

The final objective of the cluster analysis is to verify the similarity of the most critical group of components
with the ranking of the Entropy-MAUT decision-making process. The need for the Fuzzy K-means Tool to
validate the sensitivity of the analysis of the ideal decision-making set (MCDM and method of determining
weights for the criteria) is evidenced.

To verify the grouping’s effectiveness in the prioritization of the decision-making process, the evaluation
of similarities of the clusters with the position occupied by the component in the prioritization was performed.
Table 9 shows the prioritization accession between Entropy-MAUT and FKM methods.

Table 9. Similarity between FKM and Entropy-MAUT.

Cluster criticality

(decrescent order is the K Number oil(c;)mponents Es:;g%;mﬁ:f Similarity
highest priority) i
1 K, 10 1to 10 100%
2 K, 25 11 to 35 80%
3 K, 15 36 to 50 73%
4 K, 12 51 to 62 50%
5 K, 18 63 to 80 300%
6 K 72 81 to 152 81%

The ten most critical components (Topmost) for maintenance monitoring were grouped in cluster X,
showing 100% similarity with the classification of the optimal decision process (Entropy-MAUT) determined
by the sensitivity analysis. The robustness of the tool developed to determine the consistent prioritization of
the critical components of the hydro-generator unit is evidenced. Table 10 shows the total potential failures
of the critical components (step 4).
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Table 10. Topmost Components Total Potential Failures Modes.
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FT Code / CP

Potential Failure Mode

Cause of Failure

5.2.1. Kaplan Head

5.2.2 Bushing Head

3.3 Coupling Elements

4.3 Turbine Spiral Casing

4.2 Penstock

4.5.1 Adjustable Guide
Vanes

4.6.3 Runner (Cone/
Ogive)

4.6.1 Hub

5.2.3.5 Runner Blade
Trunnion

4.8 Discharge Ring

0il leakage

Failure by lubrication Lack

Rupture

Rupture of Spiral Casing

Rupture of Penstock

Adjustable Vanes section rupture
Misalignment
Plastic deformation

Failure of the adjustable vanes bushing

Section Rupture
Fasteners’ low torque (Torque control tightening failure)

Misalignment

Water infiltration

Section Rupture

Fasteners’ low torque (Torque control tightening failure)
Misalignment

Fatigue

Overload

Wear

Discharge Ring deformation

Bushing wear

Structural crack

Potential obstruction of the bushing radial holes
Pipeline cracks

Loose flanges

High temperature (Controlling failure)

Axle misalignment

Crack propagation in the fasteners

Crack propagation in the flanges

Mechanical overload)

Crack propagation due to fatigue

The raw material out of mechanical spec (material)
Welding Failures

Crack propagation due to fatigue

The raw material out of mechanical spec (material)
Crack propagation due to fatigue

The raw material out of mechanical spec (material)
Welding failures

Weld cracking

Fasteners’ low torque (Torque controlled tightening
failure)

Loose fasteners

Incorrect assembling

Crack propagation due to fatigue

The raw material out of mechanical spec (material)

Fasteners’ low torque (Torque controlled tightening
failure)

Loose fasteners

Fasteners’ low torque (Torque controlled tightening
failure)

Loose fasteners

Incorrect assembling

Sealing rings failures

Bushings failures

Pressure springs failures

Crack propagation due to fatigue

The raw material out of mechanical spec (material)

Fasteners’ low torque (Torque controlled tightening
failure)

Loose fasteners

Fasteners’ low torque (Torque controlled tightening
failure)

Loose fasteners

Incorrect assembling

Vibration

Misalignment

Excessive clearance

Alkali silica reaction (ASR) or Alkali-aggregate reaction

The most critical failure modes are related to structural failures since the occurrence of this type of failure

interrupts the power generation system. Structural failures can be catastrophic, creating safety risks for workers
and the environment.

As the hydro-generator units are composed of many devices with different characteristics, the determination
of the components’ criticality, in a robust way, helps decision-makers identify the risks of failure modes and
the consequences of operation and maintenance of the hydro-generator. Determining criticality optimizes the
use of resources in maintenance tasks.
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5. Conclusion

This paper proposed an innovative integrated tool that contributes to ensuring assertiveness in decision-making
to determine critical components of a system for preventive and predictive maintenance monitoring and choose
the most suitable maintenance policy. Seven multi-criteria decision-making methods were applied in addition to
two methods for deciding weight (Critic Method and Entropy). Sensitivity analysis is the most common method
and a necessary step to verify a decision model’s feasibility and reliability. Hence, it was performed based on
the weight change of each decision criterion to investigate the robustness of the classification of the applied
Multi-Criteria Decision Making approaches.

A case study is also proposed to detail the applicability of the proposed approach, selecting a Hydroelectric
power plant, since it represents a fundamental source for the Brazilian energy matrix. Indeed, they are used as
the main industrial assets in an electrical energy generation system. The occurrence of failures in these hydro
generators generates reduced efficiency and can stop energy generation. The unavailability of the energy system
demands high maintenance costs for the reestablishment of assets and fines imposed by regulatory bodies

This paper proposed an innovative integrated tool that contributes to ensuring assertiveness in decision-
making to determine the hydro-generator critical components for preventive and predictive maintenance
monitoring and choose the most suitable maintenance policy. In determining the critical components of the
hydro-generator, seven multi-criteria decision-making methods were applied in addition to two methods for
deciding weight (Critic Method and Entropy). To investigate the robustness of the classification of the applied
Multi-Criteria Decision Making approaches, a sensitivity analysis was performed based on the weight change of
each decision criterion. Sensitivity analysis is the most common method and a necessary step to verify a decision
model’s feasibility and reliability.

As a main result, the proposed method allows you to guarantee the solution of the problem of divergence
of the classification results of the Multi-Criteria Decision Making approaches, as it develops a new validation
approach to select the result of the most consistent classification. The validation sensitivity analysis by critical
Fuzzy K-means groups is used to evaluate the robustness of the results, making it a robust tool for decision-
making regarding the monitoring of the critical components of the Kaplan hydro generator.

To determine the criticality of the components considering the seven decision methods applied, the hybrid
Entropy-Multi-Attribute Utility Theory method was selected, which works with the additive utility function and
presents the best resistance to the variation of the criteria weights and similarity with the grouping of critical
components.

The hybrid Entropy-Multi-Attribute Utility Theory model has been analyzed through a Brazilian hydroelectric
power plant case study. In this work, it was possible to identify that structural failures can occur with catastrophic
consequences in the most critical mechanical components (Topmost components). In the event of a rupture in
the supply pipe, there may be risks associated with the environment, property, and work safety. Thus, a proper
maintenance plan can directly relate to the definition of critical components for ensuring high safety and high-
level in-service quality for all hydro generator units.

In the central question of the identification of critical components for maintenance monitoring, to accurately
determine the number of critical items for analysis, it was observed that there are currently few appropriate
methods to identify the criticality of components.

Therefore, this paper contributes to several aspects of decision-making in maintenance management research
in maintenance management. There is a gap between the mathematical models for decision-making developed
for the industrial area and organizations’ practice. This article shows the importance of a robust tool for selecting
the optimal decision method (Multi-Criteria Decision Making and Method for determining weight) for consistent
maintenance management decision-making. Since the approach is data-driven, data influences the selection of
the Multi-Criteria Decision Making method and the results. In this sense, the sensitivity analysis is fundamental
to ensure the method choice guarantees the most robust solution.

For this reason, applying the same approach to a different case study, a different Multi-Criteria Decision
Making method may lead to a more reliable solution. In comparison with other works, in this paper, more
techniques are compared in terms of solution robustness to select the most promising. Moreover, there is no
constraint on the weight variation range in the sensitivity analysis, but the modification is carried out until the
ranking of the equipment changes.

The methodology developed in this article allows the assertive use of multi-criteria analysis in industrial
maintenance management’s daily tasks. The proposed tool is applied in a case study, highlighting the importance
of a robust decision-making process to monitor the maintenance of equipment used in hydroelectric plants, a
process in which availability, reliability, and safety must be guaranteed.
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The approach applies to highly complex decision-making problems (it involves multiple attributes). There
are divergent classification results between the different Multi-Criteria Decision-Making methods applied in
these cases. 1dentifying the component criticality with the use of the developed tool ensures consistency in
decision-making. Consequently, it is expected that this study will contribute to researchers and professionals in
maintenance in improving decision-making in industrial planning.

As opportunities for future work, the authors suggest analyzing the result of prioritizing an adequate
maintenance policy for the most critical groups of components, detailing the maintenance actions, and optimizing
resources for execution.
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Appendix A. Operational Indicators Hydro generator Unit (Criteria Data).
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Appendix B. Critical Components Kaplan Hydro generator Unit (Cluster and Priorization).

Entropy-MAUT

Utility Function

o Index (U) FT Code System Component Cluster (K)
1 99.4 5.2.1 Speed Governor Kaplan Head 6
2 85.7 5.2.2 Speed Governor Bushing Head 6
3 81.6 3.3 Shaft Coupling Elements 6
4 80.8 4.3 Turbine Turbine Spiral Casing 6
5 80.2 4.2 Turbine Penstock 6
6 80.1 45.1 Turbine Adjustable Guide 6

Vanes System
7 75.5 4.6.3 Turbine Runner (Cone/Ogive) 6
8 73.2 4.6.1 Turbine Hub 6
9 69.2 5.2.3.5 Speed Governor Rurme'r Blade 6
Trunnion
10 68.7 4.8 Turbine Discharge Ring 6
Heat Exchanger MGGS
73 13.4 3.6.1.1.5 Shaft (Turbine Upper Guide 5
Bearing)
Heat Exchanger MGGI
74 13.4 3.6.1.2.5 Shaft (Turbine Lower Guide 5
Bearing)
Heat Exchanger
75 13.4 3.6.2.5 Shaft MGT (Turbine Guide 5
Bearing)
149 450 3.6.2.12 Shaft Electronic Differential 2
Pressure meter
150 459 3.6.3.1.12 Shaft Electronic Differential 2
Pressure meter
151 459 16326 Shaft Electronic Differential 5
Pressure meter
152 3.20 4.1.3.3 Turbine Control Valves 2
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