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1. Introduction

One of the main challenges of the 21st century is facing the transmission of the new coronavirus (Sars-CoV-2), 
which triggered the disease named COVID-19, which causes more than 4 million deaths, reported until mid-August 
2021 (World Health Organization, 2021). As mentioned by Xiong et al. (2020), the pandemic has drastically 
altered people’s lives, directly impacting the global economy, public and private, in addition to affecting sectors 
such as tourism, aviation, agriculture and finance.

Due to the above scenario, several organizations have developed or are developing vaccines, as it is probably 
the most effective approach to sustainably control the COVID-19 pandemic (Koirala et al., 2020). However, it is 
essential that there is logistical planning for the distribution of these vaccines, as ensuring that they are available 
reliably to end-users is a major challenge (Yang et al., 2021), especially for poor communities (Petroianu et al., 2020).

Another existing problem is that, in a scenario of vaccine distribution through vehicles, the exact routing 
models for real problems of great magnitudes require a high computational effort to find solutions (in some 
cases, taking days), despite providing great results (El-Sherbeny, 2010). Therefore, it is necessary to consider 
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the development of models based on heuristics or metaheuristics, which are methods that seek good (almost 
optimal) solutions at a reasonable computational cost (Rayward-Smith et al., 1996).

Therefore, considering the complexity of vaccine distribution using vehicles, we are faced with the following 
research question: how to do efficient vaccine distribution? To support governments in decision making, the 
current paper develops a vaccine distribution routing model (VDRM), based on the construction of a metaheuristic, 
to assist efficient distribution to society, considering, as a form of validation, a numerical application in the state 
of Pernambuco, Brazil. At least as far as we know, there is no article that addresses this issue.

2. Literature review

2.1. Vehicle Routing Problem (VRP)

VRP is a problem where a number of m vehicles must visit a set of n customers to meet their respective 
demands, and for that, using combined routes to minimize a specific objective, which may be the traveled distance 
or cost for displacement (Bell & McMullen, 2004). Thus, VRP is a generalization of the classic Traveling Salesman 
Problem (TSP) and, consequently, is also characterized as one of the NP-hard problems (Lima et al., 2004).

Mathematically, as established by Laporte (1992), VRP can still be defined as a graph G = (V, A), where 
V = (0,1,2 ..., n) is a set of vertices representing cities, with the deposit (starting point of each vehicle) located 
at the vertex V0 and A is the set of arcs. At each arc (i, j), given that i ≠ j, there is an associated non-negative 
distance matrix C=(Cij). As mentioned above, it can be interpreted as, for example: travel cost, travel time, trip 
distance, among others. It depends on the context and the purpose of the decision makers.

There are some conditions for VRP to be satisfied (Mohammed et al., 2017):

−	Each vehicle visits a set of customers and returns to the place of departure, that is, the vehicles have their initial 
and final destinations at the same location (deposit);

−	Each location (customer) will be visited once on each route;

−	The capacity of each vehicle is sufficient for all applications (meeting all customer demands) included in each 
route.

The assumptions for VRP can increase and vary, depending on the extent of the problem, which can add 
time windows (Gendreau & Tarantilis, 2010), multiple deposits (Montoya-Torres et al., 2015), green vehicles 
(Lin et al., 2014; Moghdani et al. 2020), periodic vehicles (Campbell & Wilson, 2014), among others. Other 
distinct variants are mentioned by Braekers et al. (2016). One of the classic formulations (integer programming) 
most used for VRP as a basis for several solution methods can be found in Fisher & Jaikumar (1981).

However, because it is a hard combinatorial optimization problem, VRP in its exact form solves only relatively 
small instances in an optimized way, which makes it difficult to solve problems as the instances increase, given 
that exact algorithms based on enumeration partial have a slow convergence rate, which makes, in practice, 
heuristics more adequate than exact approaches (Cordeau et al., 2002). This is one of the reasons why this paper 
focuses efforts to develop a metaheuristic, since considering the immensity of the social instance addressed, 
which are the n cities to receive vaccines against COVID-19, the problem would be impossible to be solved in 
acceptable computational time, if an exact approach was adopted.

2.2. GRASP (Greedy Randomized Adaptive Search Procedure)

The traditional GRASP metaheuristic, originally proposed by Feo & Resende (1989), is a multi-start algorithm 
(for successively starting with a distinct “initial solution”), based on two phases: a random construction phase 
using a function greedy; and an improvement phase to reach a great location (López-Sánchez et al., 2019). 
A generic GRASP pseudocode is shown in Table 1.

According to GRASP procedure, after reading the problem data, it is necessary to include a rule that establishes 
the procedure stop criterion, that is, as long as this condition is not met (as a specific number of interactions 
-GRASPmax) the algorithm remains executed (Sohrabi et al., 2020).

Table 2 shows the constructivist phase of the method, in more detail.
For the constructive stage, it is initially necessary to select a viable solution, consolidated through the 

interaction between one element at a time, based on a Restricted List of Candidates (RLC) (Ribeiro et al., 2006). 
This solution will become the current solution. The RLC set is composed of the most interesting elements of 
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a list of candidates to be included in the solution, following a greedy criterion, and it is exactly this technique 
that ensures different solutions for each GRASP interaction.

To determine the number of elements in the RLC set, it is necessary to define the value of parameter α, which 
can vary from 0 to 1. According to López-Sánchez et al. (2019), if α = 0, the RLC set has only one element and 
behaves as a constructive heuristic algorithm of greedy type, since if α = 1, all candidate elements can be part 
of the RLC set and the choice process becomes totally random. Given the above, there is the second phase of 
GRASP, which is the phase of local improvement (Table 3).

The local search works as a refinement phase. This phase seeks in the neighborhood of s an improvement 
in the objective function, and, if found, it is stored. The improvement procedure is performed until a better-
performing neighbor is not found (Cravo & Amaral, 2019). It is important to note that the local search phase 
depends on one or more neighborhood operators. Given the end of the algorithm, the solution is defined.

According to Resende & Ribeiro (2010), the efficiency of the second phase depends on some aspects, such 
as: a good quality initial construction, a robust neighborhood structure and, mainly, of a strategy used in the 

Table 1. Generic GRASP pseudocode.

Procedure GRASP (f (.), g (.), N (.), GRASPmax, s)

1: f* ← ∞;

2: For (Iter = 1, ..., GRASPmax):

3:         Construction (g (.), α, s);

4:         LocalSearch (f (.), N (.), s);

5:         If (f (s) < f*):
6:               s* ← s;
7:              f* ← f (s);
8:         End-If;
9: End-For;
10:s ← s*;
11: Return s;

End GRASP
Source: Adapted from Souza (2011).

Table 2. Pseudocode (Construction).

Procedure Construction (g (.), α, s)

1: s ← ∅;

2: Initialize the candidate set C;

3: While (C ≠ ∅):

4:         g ( mint ) = min{g(t) | t ∈ C};

5:         g ( maxt ) = max{g(t) | t ∈ C};

6:         LCR = {t ∈ C | g(t) ≤ g ( mint ) + α (g ( maxt ) - g ( mint ))};
7:         Select at random one element t ∈ LCR;
8:         s ← s ∪ {t};
9:         Update the candidate set C;
10:End-While;

11:Return s;

End Construction
Source: Adapted from Souza (2011).

Table 3. Pseudocode (Local Search).

Procedure LocalSearch (f (.), N (.), s)

1: V = {s’ ∈ N(s) | f (s’) < f(s)};

2: While (|V| > 0):

3:         Select s’ ∈ V;

4:         s ← s’;

5:         V = {s’ ∈ N(s) | f(s’) < f(s)};
6: End-While;
7: Return s;

End LocalSearch
Source: Adapted from Souza (2011).
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local improvement phase (e.g., first improvement or best improvement). More details of GRASP can be found 
in Feo & Resende (1995) and Resende & Ribeiro (2019).

2.3. VND (Variable Neighborhood Descent)

VND is a local search method proposed by Mladenović & Hansen (1997), which uses different neighborhood 
structures/operators to explore the solution space, replacing the current solution with a new one only if there is 
an improvement (Den Besten & Stützle, 2001; Jabal-Ameli et al., 2011). As a search strategy, one of the most 
traditional ones is generally used, namely: “first improvement” or “best improvement” (Hansen et al., 2017). 
Table 4 presents the pseudocode for the VND.

To be considered VND, the algorithm must have at least two neighborhood operators, making it more 
likely to achieve a global optimum than with a single operator (Hansen et al., 2019). However, depending on 
the problem addressed, the search for the best neighbor may require a high computational effort, especially if 
there is a large set of neighborhood structures. Therefore, it is essential for the user to make an analysis of the 
number of neighborhood structures required.

3. Methodology

As the complexity of VRP is NP-Hard, there is no precise algorithm that can quickly solve practical problems 
with high dimensions. Thus, the use of a metaheuristic presents itself as the most appropriate approach to deal 
with this type of problem. The methodology for solving VDRM consists of defining the implementation scenario 
with the instances and the metaheuristic for routing distributions.

3.1. Scenario

We consider the state of Pernambuco as a numerical application. It is important to highlight that the model 
can be applied to other states or even other countries, making the necessary adjustments. Furthermore, we were 
not successful in contacting the Brazilian government to apply our model. In this sense, our application is only 
a numerical example. Nevertheless, the data we present here simulate a realistic application, which emphasizes 
the importance of the study. We intend to persist in contacting the responsible managers in order to apply it 
in a real case.

According to the Brazilian Ministry of Health (Lara, 2021), vaccines are allocated to Brazilian states through 
defined flights. Then, each state (also called federative unit) is responsible for the distribution strategies to the 
municipalities, which can be done in up to seven days.

In Pernambuco, the vaccines arrive in Recife at the Recife/Guararapes - Gilberto Freyre International Airport. 
Subsequently, the vaccines go to a logistics center that is responsible for forwarding the vaccines to 12 regional 

Table 4. VND pseudocode.

Procedure VND (s, Kmax)

1: Initialization: s = Initial Solution Generated; Define a Set of Neighborhood Structures kN , k = 1, 2, ..., Kmax;

2: While (No improvement is found):

3:         k=1;

4:              While (k ≠ Kmax);

5:                      x’ = BestNeighbor ( kN  (x));
6:                      If (x’ better than x):
7:                            x=x’;
8:                      Else:
9:                             k=k+1;
11:                    End-If;
12:              End-While;
13: End-While;
14: Return s;

End VND
Source: Adapted from Den Besten & Stützle (2001).
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health managers in the state (GERES). Finally, the secretaries of all municipalities are responsible for picking up 
the vaccines in each GERES (Pernambuco, 2021).

It is possible to observe that although the state of Pernambuco has 12 GERES, which are cities strategically 
located throughout the state, there is an ineffective logistical process. Imagine that a municipality is located at 
point A and its administrative unit at point B, for the vaccines to be collected it is necessary to travel twice in the 
same route (A → B → A). As it is today in the real case, 172 cities take a duplicate route to go to the 12 GERES.

To improve the abovementioned real case, this research proposes three optimization cases. The first case 
has Recife as a depot, which receives batches of vaccines via air, with a routing plan containing all the cities in 
the state departing only from Recife. Cases 2 and 3, on the other hand, consider multiple distribution depots, 
with Recife and Petrolina in the second case, with the receipt of batches of vaccines also by air, with Recife 
responsible for the municipalities of GERES located in the east part and Petrolina with the municipalities of the 
part west. The third case receives batches of vaccines in the 12 central municipalities of GERES, with a routing 
plan where each central municipality only distributes to the cities belonging to the same GERES.

3.2. Implementation steps

The implementation of the algorithm was divided into three steps. In the first step, data were collected from 
the instances to be applied in VDRM, such as the number of cities, number of vehicles, distances between cities, 
vehicle capacity, batches of vaccines for distribution and demands of cities. In the second step, GRASP-VND 
hybrid metaheuristic adjusted for VDRM solution was implemented. In the third stage, computational experiments 
were carried out.

3.2.1. Instances

VDRM has a set of 184 cities that form the supply routes. For the sets of vehicles, cases 1 and 2 have m = 4, 
which is the number of vehicles that distribute the vaccines, while case 3 has m = 12. The batch of vaccines 
used in the simulation was the same received by the secretariat of the state of Pernambuco on July 2, 2021, 
with 67,170 doses from the Sinovac/Butantan laboratory, 94,770 doses from Pfizer, 62,250 doses from Janssen 
and 305,790 doses from AstraZeneca, totalling 529,980 doses of vaccine from COVID-19.

The demands of the cities were defined according to the calculation of the percentage of three indexes 
in relation to the total of the state for each one of the cities, these indexes are: population number, number 
of active cases of COVID-19 and number of deaths due to COVID-19 on the same date as the receipt of the 
vaccine batches. Thus, an average is made between the percentages of these three indexes and from this average 
percentage the batch of vaccine doses is divided into a balanced way. Additionally, we defined a margin of 5% 
for possible cargo damage. When there is a need for reapplication of the vaccine (for example, for a second 
dose), the metaheuristic should be run again with the respective demands. Figure 1 shows the demand for each 
municipality in number of doses.

From the balanced proportions of the demands of the cities, the problem is their safe transport, for this 
the Ministry of Health’s cold chain manual (Brasil, 2017) defines the guidelines for equipment, storage and 

Figure 1. Density of vaccine demand by city.
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transport of immunobiologicals, in which it is established that for the transport of vaccines the road modal 
with refrigerated vehicles is used.

Immunobiologicals are packaged in expanded polystyrene coolers with recyclable ice coils on the bottom 
and side walls of the box. Thus, vehicles for transporting refrigerated immunobiologicals have the capacity to 
transport 24 coolers, each cooler has the capacity of 10 vials of 60 units, and each vial has 10 doses of the 
vaccine, so the vehicles have the capacity to safely transport 144,000 doses.

To obtain the distances, the map of Pernambuco (Instituto Brasileiro de Geografia e Estatistica, 2019) was 
processed in the QGIS software, which is an open-source geographic information system (GIS) (QGIS, 2021). 
Through the QGIS vector commands, 184 points were obtained, with coordinates representing each municipality 
in the state, not considering the island of Fernando de Noronha. To form the distance matrices between regions, 
geometric distances in multidimensional space, known as Euclidean distances, were calculated.

3.3. Exact formulation of the VDRM

To formulate the exact solution of the vaccine distribution routing model it is necessary to review and adapt 
classical formulations Multi-Depot Vehicle Routing Problem (MDVRP) (Kulkarni & Bhave, 1985; Montoya-
Torres et al., 2015).

The mathematical model of the MDVRP is defined by Renaud et al. (1996) as a graph G = (V,E) where V 
is the set of nodes and E is the set of arcs or edges connecting each pair of nodes. Furthermore, V consists of 
two subsets: the set of cities or customers ( cV  = { 1v , ..., Nv }) and the set of deposits ( dV  = { 1Nv + , ..., Mv }). 
Moreover, each customer iv  has a nonnegative demand id .

Thus, the problem consists of minimizing the traveled distance ijc , according to Equation 1, where K represents 
the total number of vehicles and ijkx

 the binary decision variables, which can equal 1 if the pair of nodes i and 
j are in the route of vehicle k, or 0 otherwise.

1 1 1

N M N M K

ij ijk
i j k

c x
+ +

= = =
∑ ∑∑ 	 (1)

For this objective, there are nine indispensable constraints. The first two constraints (2 and 3) must ensure 
that each customer is served by one and only one vehicle.

1 1

1        1, ,
N M K

ijk
i k

x j N
+
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= ∀ = …∑∑ 	 (2)
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Route continuity is preserved by constraint 4.
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Our contribution is in constraint 5, which defines the percentage of vaccines demanded by each city in 
a specified territory (e.g., state or country). In this constraint, ip , iγ  and iσ  represent the population number, 
number of active cases of COVID-19 and number of deaths due to COVID-19 for each city, respectively. This 
means that totalp , totalγ  and totalσ  represent these same indices for the total territory (e.g., Pernambuco 
State, Brazil). Finally, iϕ  represents the number of available vaccines of each type, where Φ  represents the 
set of vaccines.

1

 
*       1, ,

3

i i i
total total total

i i
i

p
p

Q i N

γ σ
γ σ

ϕ
Φ

=

+ +
= ∀ = …∑ 	 (5)



Production, 31, e20210031, 2021 | DOI: 10.1590/0103-6513.20210031 7/12

Each vehicle’s capacity, kP , must be guaranteed, as specified in constraint 6.

1 1

      1, ,
N M N M

i ijk k
i j

Q x P k K
+ +

= =

≤ ∀ = …∑ ∑ 	 (6)

Vehicle availability is verified by constraints 7 and 8.

1 1

1     1, ,
N M N

ijk
i N j

x k K
+

= + =

≤ ∀ = …∑∑ 	 (7)

1 1

1     1, ,
N M N

ijk
j N i

x k K
+

= + =

≤ ∀ = …∑ ∑ 	 (8)

Subtour elimination is provided by constraint 9.

( )
1

           1 ,        1 
V

i j ijk
k

y y M N x N M for i i j M N
=

− + + ≤ + − ≤ ≠ ≤ + −∑ 	 (9)

The last constraint (10) ensures that the decision variables are binary.

{ }  0,1   , , ijkx i j k∈ ∀ 	 (10)

Since this formulation is an extension of the classical VRP presented in subsection 2.1, it is also an NP-hard 
problem. Therefore, it is impossible to solve this exact formulation in an acceptable computational time, which 
justifies the metaheuristics developed in the next section.

3.4. Metaheuristic GRASP-VND

The proposed metaheuristic is a Greedy Randomized Adaptive Search Procedure (GRASP). This metaheuristic 
uses in its construction stage the classic Restricted Candidate List (RCL) and an α parameter that controls the 
greedy and random approach of the process. Thus, in a way that the capacity of the vehicles is respected, the 
procedure ends when all municipalities are on a route. In the local search stage, the Variable Neighborhood 
Descent (VND) refinement method was used. The pseudocode of the implemented metaheuristics for the 
definition of routes is shown in Table 5.

Thus, from the instances received by the algorithm, line 3 of the pseudocode shows that a series of iterations 
was executed, wherein each iteration an initial route was generated for each vehicle (line 4), thus determining 
which cities were selected for the route through a list of candidates C (line 5). This list follows a logic that respects 
restrictions 2, 3, and 4, which ensure that each city is visited only once by only one vehicle and that every vehicle 
that visits a city delivering vaccine batches withdraws from it to the next city or the origin, ensuring continuity.

For the number of cities that make up the route of each vehicle, restrictions 5, 6, 7, and 8 are respected, where 
each vehicle supports a number of cities that do not exceed its capacity and availability. In the local search phase, 
different routes were defined according to the best neighbor in the sets of routes in the neighborhoods of the 
different operators, thus seeking to minimize the total distance of the routes, fulfilling the objective function.

The use of VND makes the algorithm capable of exploring different solution spaces with the sequential use 
of neighborhood operators, who seek to effect exchange changes between the sets of destinations present in the 
current solution. Eleven operators were used, five of which were to improve the route of each vehicle, namely 
or-opt1, or-opt2 and or-opt3, which consists of removing one, two or three adjacent cities for insertion in 
another position. Swap, where the exchange is made between two non-adjacent cities and 2-opt that removes 
two arcs from a route and inserts two new arcs at the same route, and six operators for improvement between 
the vehicle routes, which are shift(1,0), shift(2,0), shift(3,0), that consists of transferring one, two or three cities 
from one route to another route, finally the swap(1,1), swap(2,2) and swap(3,3), which consists of exchanging 
one, two or three cities on one route with cities on another route.
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4. Results and discussions

The proposed metaheuristic was implemented in Python 3 and executed on a computer with an Intel Core 
i7 processor, 8 GB of installed memory (RAM), 64bit windows 10 operating system. With the instances collected and 
generated based on the 184 municipalities of the state of Pernambuco, with three different optimization cases for 
comparison with the real case, GRASP-VND metaheuristic for each case was executed 30 times with the best adaptation 
alpha for each case, the best solution being considered for analysis. Shown in Table 6 the values of best, mean and 
standard deviation found for the distances in km and the computational execution time of the algorithm in seconds.

Table 5. GRASP + VND pseudocode.
Algorithm GRASP + VND (Matrix of distances, demands, capacity, α, itermax)

1: s = ∅

2: bestf = 0

3: For (iter = 1, ..., itermax):

4:       For (each vehicle):

5:              Initialize a list of candidates C

6:              While (C  ≠∅ ):

7:                     ( )  ming t = min ( ){ } | g t t C∈

8:                     ( ) ( ){ }  | maxg t max g t t C= ∈

9:                     RCL = ( ) ( ) ( ) ( )( ){ } |    min max mint C g t g t g t g tα∈ ≤ + −

10:                   Select one of the nodes that belongs to list C at random ( t∈  RCL)

11:                   s = s ∪  {t}

12:                   Update list C
12:              End-While;
13:       End-For;

14:       k = 1

15:       While (k ≤ neighborhood operator):

16:              Search for the best neighbor ( ) ks N′∈

17:              if (f( s′ ) > f( bests )):

18:                    s = s′
19:                    k = 1

20:              else:

21:                    k = k + 1
22:              End-If;
23:       End-While;

24:       if (f(s) > bestf ):

25:             bests  = s

26:             bestf  = f(s)
27:       End-If;
28: End-For;

29: Return s

Table 6. GRASP-VND metaheuristic results.
Case Real 1 2 3

Distance (km)

Best 14,434 3,974 3,513 3,655

Average - 4,320.55 3,704.43 3,662.27

Standard deviation - 211.06 94.01 8.48

Time (s)

Best 0.001 1,050.36 206.78 22.26

Average - 2,870.11 384.49 37.35

Standard deviation - 971.65 108.36 9.94
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The best optimization to minimize the distances traveled in the distribution of vaccines is the second case, 
which has Recife and Petrolina as distribution depots. This case had a total distance of 3,513 km traveled by 
4 vehicles, a saving of almost 11,000 km compared to the real case, thus representing a routing 75.66% more 
efficient than that currently performed by the state health department. The third and first cases follow as good 
alternatives with 3,655 and 3,974 km respectively. However, cases 1 and 2 have high standard deviation values 
with 211 and 94, respectively, this dispersion is better visualized in the boxplot graphs in Figure 2.

Analyzing the dispersions of these cases, case 3 presents values well concentrated in the average 
of 3,662 km, with a standard deviation of only 8.48 km. This low interquartile range, is due to less 
complexity for the optimization of this case, considering that it is only one vehicle is used to route the 
cities of GERES itself, thus reducing n from 184 to the number of cities in each GERES. Cases 1 and 2, 
on the other hand, have greater interquartile ranges, a natural factor because as the number of cities 
n increases, all 184 in case 1 and the division of east and west cities in case 2, there is an increase in 
complexity of the model, as they are considered new distance analyses. Time also goes through this 
increase, because the more cities to be considered, the greater the possibilities for searching in the 
neighborhood, with the selection of the best improvement, which makes the local search even longer, 
but with the best possible result.

These higher interquartile variability and standard deviations are due to GRASP-VND method being 
a metaheuristic that works with randomness, with the possibility of different results running the same 
algorithm, mainly due to the diversification in the generation of initial solutions. The real case route and 
the optimized case routes can be analyzed from Figure 3.

From the results obtained, it is evident that some vehicles will travel more cities (and consequently, a greater 
distance) than other vehicles. This is due to the variation in demands around the state, where generally there 
are sets of cities that return a sum of demands many times lower than the demand of a single city, for example. 
In this case, the behavior referred to is expected, given that the objective of the model is to minimize the distance 
covered, considering the aggregation of the distances of the four vehicles. The scenario would change, possibly, 
if it were considered to minimize the time traveled by vehicles.

5. Final considerations

The objective of the paper was concluded, since it was possible to provide vehicle routing for distributing 
vaccines against COVID-19, considering the construction of a metaheuristic, given the difficulty of the problem 
addressed. The metaheuristic showed an efficiency of 75.66% in relation to the current way of distribution 

Figure 2. Boxplot graph of the distance and time results of the algorithm.
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Figure 3. Plots of real case and optimized case routes.
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considered by the state of Pernambuco. Additionally, although the application and validation of the model 
were based on the state of Pernambuco (Brazil), it is possible to extend the model to other states, regions or 
even a country.

More specifically, our metaheuristics can be used in multiple ways for routing vehicles that distribute other 
ampoules to combat other types of diseases. The reference to the use of multiple ways, that is to say: depending 
on the need to deliver the vaccines, it is possible to increase the number of vehicles available, to reduce the 
delivery time (when there is urgency), or to reduce the number of vehicles (when there is no urgency), in order 
to generate cost savings. In the latter case, it is necessary to carry out a financial analysis to understand the 
feasibility of the scenario.

One difficulty of this study was to compare the performance of the proposed metaheuristics with other 
models, as it was not possible to find an exact algorithm that solved instances of the same size (returning the 
optimum value), for the same problem. Nevertheless, the execution of GRASP-VND of this study managed to 
solve most instances in terms of seconds, which already satisfies the purpose of this paper.

Given the above, the importance of developing works for vehicle routing aiming at the distribution of 
vaccines, even before its approval, is highly relevant, since logistical operations are full of challenges and need, 
as a way to mitigate the impacts of the pandemic, agility in planning the entire supply chain.

5.1. Suggestions for future research

The paper considered identical items (identical volumes), as it illustrates the distribution of ampoules only 
to combat COVID-19. In addition, the number of vehicles required for routing was established based on the 
demands of the cities and the volume of all trucks. However, when there is a need to distribute ampoules for 
different diseases (with different volumes), it is crucial to establish the best way to conduct the packaging inside 
the trucks. For this reason, it is suggested to aggregate the packaging problem in the proposed metaheuristic, 
as this would make it possible to perform vehicle routing with ampoules for different diseases, minimizing the 
number of vehicles and containers used.

In another view, it is advisable to build other metaheuristics (like Tabu Search, Variable Neighborhood Search, 
Simulating Annealing and Genetic Algorithm) to compare performances, both of the computational effort and 
of the quality of the final solution. Moreover, a cost evaluation should be added, considering costs such as: fuel, 
cooling, penalties, and so on. Additionally, addressing the time window constraint is fundamental, in order to 
respect a daily operation limit. Finally, it is necessary to restrict delivery to commercial hours and to consider 
that a heterogeneous fleet of vehicles, as there is a difference in car models in each city.
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