Production
https://prod.org.br/doi/10.1590/S0103-65132009000100014
Production
Article

Efeito da redução do tamanho de lote e de programas de Melhoria Contínua no Estoque em Processo (WIP) e na Utilização: estudo utilizando uma abordagem híbrida System Dynamics - Factory Physics

Effect of lot size reduction and Continuous Improvement on Work In Process and Utilization: study using a combined System Dynamics and Factory Physics approach

Godinho Filho, Moacir; Uzsoy, Reha

Downloads: 0
Views: 807

Resumo

O presente trabalho apresenta um modelo quantitativo que utiliza de forma híbrida as abordagens System Dynamics - SD (FORRESTER, 1962) e Factory Physics (HOPP; SPEARMAN, 2001) objetivando estudar o efeito conjunto de seis programas de Melhoria Contínua - CI (variabilidade na taxa de chegada, variabilidade do processo, qualidade, tempo até a falha, tempo de reparo e tempo de set up) e de redução de tamanhos de lote de produção nos níveis médios de Estoque em Processo (WIP) e Utilização em um ambiente produtivo com uma única máquina que processa múltiplos produtos. Os resultados dos experimentos realizados utilizando-se o modelo desenvolvido fornecem insights e subsídios que dão suporte a uma série de modernas ferramentas e filosofias de gestão da manufatura, tais como programas de redução da variabilidade do processo como, por exemplo, Seis Sigma; programas de redução de set up, como por exemplo os programas SMED (Single Minute Exchange of Die), Sistema Toyota de Produção/Manufatura Enxuta e Quick Response Manufacturing (QRM). Além disso, o modelo também serve para auxiliar na escolha de diferentes possibilidades de programas de Melhoria Contínua no chão de fábrica.

Palavras-chave

Tamanho de lote de produção, Melhoria Contínua, Estoque em Processo, Utilização, System Dynamics, Factory Physics

Abstract

This paper builds a quantitative model, which is a result of a combination of System Dynamics (FORRESTER, 1962) and Factory Physics (HOPP; SPEARMAN, 2001) approaches aiming to examine how six Continuous Improvement (CI) programs (arrival variability, process variability, quality (defect rate), time to failure, repair time, and set up time), together with lot size reduction, affect Work In Process (WIP) and Utilization in a multi-product, single-machine environment. Results of the paper provides support for: i) the importance of implementing set up reduction programs; ii) Lean Manufacturing (LM) philosophy regarding the implementation of small CI programs in a lot of variables and areas of the shop floor; iii) Quick Response Manufacturing (QRM) philosophy regarding the importance of managers to know the convex relationship between lot size and WIP in order to decide the amount of lot size reduction to be performed on shop floor; iv) the choice between alternative CI programs.

Keywords

Lot Size, Continuous Improvement, Work In Process, Utilization, System Dynamics, Factory Physics.

References



ADAMS, M., et al. Simulation As A Tool For Continuous Process Improvement. Winter Simulation Conference, 1999.

ATTADIA, L. C.; MARTINS, R. A. Medição de desempenho como base para evolução da melhoria contínua. Produção, v. 13, n. 2, p. 33-41, 2003.

BAINES, T. S.; D. K. HARRISON. An Opportunity For System Dynamics In Manufacturing System Modeling. Production Planning and Control, v. 10, n. 6, p. 542-552, 1999.

BERGER, A. Continuous Improvement And Kaizen: Standartization And Organizational Designs. Integrated Manufacturing Systems, v. 8, n. 2, p. 110-117, 1997.

BESSANT, J.; D. FRANCIS. Developing Strategic Continuous Improvement Capability. International Journal of Operations & Production Management, v. 19, n. 11, p. 1106-1119, 1999.

BHUIYAN, N.; A. BAGHEL. An Overview Of Continuous Improvement: From The Past To The Present. Management Decision, v. 43, n. 5, p. 761-771, 2005.

CAFFYN, S. Development Of A Continuous Improvement Self-Assessment Tool. International Journal of Operations & Production Management, v. 19, n. 11, p. 1138-1153, 1999.

FORRESTER, J. W. Industrial Dynamics. Cambridge, MA: MIT Press, 1962.

HOPP, W.; M. L. SPEARMAN. Factory Physics. Boston: Irwin, 2001.

IMAI, M. Kaizen - The Key To Japan's Competitive Success. Nova York: Random House, 1986.

JHA, S. et al. The Dynamics Of Continuous Improvement: Aligning Organizational Attributes And Activities For Quality And Productivity. International Journal of Quality Science, v. 19, n. 10, p. 1010-1033, 1996.

KARMARKAR, U. S. et al. Lot Sizing and Lead Time Performance in a Manufacturing Cell. Interfaces, v. 15, n. 2, p. 1-9, 1985b.

KERRIN, M. Continuous Improvement Capability: Assessment Within One Case Study Organisation. International Journal of Operations & Production Management, v. 19, n. 11, p. 1154-1167, 1999.

LASDON, L. S. Optimization theory for Large Systems. Nova York: Macmillan, 1970.

LEEDE, J.; LOOISE J. K. Continuous Improvement And The Mini-Company Concept. International Journal of Operations & Production Management, v. 19, n. 11, p. 1188-1202, 1999.

LIKER, J. The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer. Nova York: McGraw-Hill, 2004.

LIN, C. et al. Generic Methodology That Aids The Application Of System Dynamics To Manufacturing System Modeling. IEE Conference Publication, v. 457, p. 344-349, 1998.

MAPES, J. et al. Process Variability And Its Effects On Plant Performance. International Journal of Operations & Production Management, v. 20, n. 7, p. 792-808, 2000.

MESQUITA, M.; ALLIPRANDINI, D. H. Competências essenciais para melhoria contínua da produção: estudo de caso em empresas da indústria de autopeças. Gestão & Produção, v.10, n.1, p. 17-33, 2003.

PANDE, P. et al. The Six Sigma Way: How GE, Motorola and Other Top Companies are Honing Their Performance. Nova York: McGraw-Hill, 2000.

PENTILLÄ, M. J. Reducing variability in a semiconductor manufacturing environment. Department of Electrical Engineering and Computer Science. Boston, Massachusetts Institute of Tehcnology. Master: 75, 2005.

SAVOLAINEN, T. I. Cycles of continuous improvement: Realizing competitive advantages through quality. International Journal of Operations & Production Management, v. 19, n. 11, p. 1203-1222, 1999.

SCHOEMIG, A. K. The Corrupting Influence of Variability in Semiconductor Manufacturing. Winter Simulation Conference, 1999.

SHINGO, S. A Revolution in Manufacturing: The SMED System. Cambridge: Productivity Press, 1986.

SPEARMAN, M. L.; HOPP, W. J. Teaching operations management from a science of manufacturing. Production and Operations Management, v. 7, n. 2, p. 132-145, 1998.

STANDRIDGE, C. R. How factory physics helps simulation. Proceedings of the 2004 Winter Simulation Conference, 2004.

STERMAN, J. D. Business Dynamics: Systems Thinking and Modeling for a Complex World. Nova York: McGraw-Hill, 2000.

SURI, R. Quick Response Manufacturing: A Companywide Approach to Reducing Lead Times. Portland: Productivity Press, 1998.

TESFAMARIAM, D.; LINDBERG, B. Aggregate analysis of manufacturing systems using system dynamics and ANP. Computers & Industrial Engineering, v. 19, p. 98-117, 2005.

TREVILLE, S. D. et al. From supply chain to demand chain: the role of lead time reduction in improving demand chain performance. Journal of Operations Management, v. 21, p. 613-627, 2004.

VAUGHAN, T. S. Lot Size Effects On Process Lead Time, Lead Time Demand, And Safety Stock. International Journal of Production Economics, v. 100, p. 1-9, 2006.

WOMACK, J. P. et al. The machine that changed the world. Nova York: Harper Perennial, 2000.

5883a3e07f8c9da00c8b46a0 1574685864 Articles
Links & Downloads

Production

Share this page
Page Sections