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Comparando os coefi cientes de capacidade 
multivariados de Mingoti e Glória e Niverthi e Dey.

RESUMO
Neste artigo é apresentada uma comparação entre os índices de capacidade multivariados de Mingoti e Glória (2003) e Niverthi e Dey (2000).  O mé-
todo de simulação de Monte Carlo é utilizado na comparação, e intervalos de confi ança para o verdadeiro valor do índice de capacidade do processo 
são construídos através da metodologia Bootstrap.
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ABSTRACT
In this paper a comparison between Mingoti and Glória’s (2003) and Niverthi and Dey’s (2000) multivariate capability indexes is presented. Monte Carlo 
simulation is used for the comparison and some confi dence intervals were generated for the true capability index by using bootstrap methodology.
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1.  INTRODUCTION

Process capability indexes (PCI) are used to evaluate 
the process performance according to the required 
specifi cations limits. Some well known indexes for the 
univariate case are Cp, Cpk, Cpm, (MONTGOMERY, 2001; 
ZHANG, 1998). Very oft en multiple quality characteristics 
are used to evaluate the performance of the process and in 
general they are correlated (MASON; YOUNG, 2002); in 
these situations, a common procedure is to evaluate the 
process capability  considering each variable separatedly 
discarding the information of the possible correlation 
among them. An alternative is to use multivariate capability 
indexes. The univariate specification interval is then 
replaced by a specifi cation region and capability indexes 
are generated according to the joint probability distribution 
of the variables. In general the multivariate normal 
distribution is used. Although the multivariate case is very 
common most of the existing papers in the literature deal 
with univariate process capability indexes. See Koltz and 
Johnson (2002) for a good review in the capability subject. 
Some multivariate PCI’s were proposed by Chen (1994), 
Shahriari et al. (1995) and Taam et al. (1993;1998) using 
classical statistical estimation procedures. Th ese indexes 
were compared by Wang et al. (2000) considering some 
particular examples. Niverthi and Dey (2000) extended the 
univariate Cp and Cpk indexes for the case were p quality 
characteristics are measured in each sample unit; Veever’s 
(1998) introduced a viability index for multiresponse 
process and Wang (2005) proposed a capability index 
based upon principal components analysis for short run 
production. Other interesting references are: Polansky 
(2001), Foster et al. (2005), Wang (2006), Pearn and Wu 
(2006) and Pearn et al. (2007). Some PCI’s indexes derived 
under the Bayesian framework are found in Cheng and 
Spiring (1989), Bernardo and Irony (1996) and  Niverthi 
and Dey (2000) who used Gibbs sampler. 

The index proposed by Chen (1994) is quite interesting 
and it depends on the value of the cumulative distribution 
function of the maximum coordinate of the random 
vector X with a p-variate normal distribution. However, 
some analytical or numerical resolution of equations are 
needed to obtain its value (WANG et al., 2000). By using 
some ideas suggested in Hayter and Tsui’s paper (1994) 
for correction of control limits in multivariate control 
charts, Mingoti and Glória (2003) introduced a method 
which allowed to obtain the numerical value of Chen’s 
capability index using a simulation procedure. This paper 
presents a comparison of Mingoti and Glória’s (2003) 
with  Niverthi and Dey’s (2000) indexes by using Monte 

Carlo simulation. Some confidence intervals for the true 
capability indexes were generated by using bootstrap 
methodology. 

2.  UNIVARIATE CAPABILITY INDEXES

Let  X  be the quality characteristic of interest with normal 
distribution with parameters μ and σ. Let LSL and USL be the 
lower and upper specifi cations limits respectively. Th e well 
known capability indexes Cp andCpk are defi ned as

(1)

                                                         

Basically, they represent the relationship between the 
process and the clients (or project) specifi cation  limits. 
Some references values, such as 1.33 or 2, are used to 
classify the process as being capable or not. When  p random 
variables, p > 1, are monitored at the same time there is a 
need to build up multivariate indexes. A simple extention 
of the indexes defi ned in (1) to the multivariare case is to 
take the geometric mean of theCpi and  Cpki values obtained 
for each quality characteristic Xi, i=1,2,…,p. However, this 
procedure does not take into consideration the relationship 
that might exist among the variables. Niverthi and Dey 
(2000) extended the univariate capability indexes, Cp 
and Cpk, for the multivariate case taking into account the 
correlation among the variables. Th eir indexes are basicaly 
linear combinations of the upper and lower specifi cations 
limits of the quality characteristics being the coeffi  cients 
of the linear combinations related to the covariance matrix 
of the process. Another alternative was proposed by Chen 
in 1994 and modifi ed by Mingoti and Glória (2003) who 
used Hayter and Tsui’s (1994) multivariate control limits 
to build new capability indexes. In the next section Hayter 
and Tsui’s methodology is introduced followed by Chen’s, 
Mingoti and Glória’s, Niverthi and Dey’s indexes in sections 
4, 5 and 6, respectively.  

3.  HAYTER AND TSUI CONTROL LIMITS 
CORRECTION 

  
Let X = (X1 X2 ...Xp)’ be the random vector with the quality 

characteristics of interest such that X has a p-variate normal 
distribution with vector mean μ0 = (μ0

1 μ0
2 ...μ0

p) covariance 
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2005). Hayter and Tsui (1994) also showed that the 
confi dence intervals derived by using the CRα were better 
than the intervals derived by Bonferroni’s method. 

     
  

4.  CHEN’S MULTIVARIATE CAPABILITY INDEX 
 

Let  V  be the specifi cation region of the process defi ned as

                                                                       (4)

where μ0
i is the specifi cation mean value for the variable 

Xi and ri are the specifi cation constants of  the process, 
i = 1, 2,…,p. Chen’s multivariate capability index (1994)  is 
defi ned as 

where r is such that 

(5)

Th e process is considered capable if the value of MCp is 
larger than 1 and incapable otherwise. Other reference values 
could be used in place of 1. Th e value of r is obtained by using 
the accumulated distribution function FH of the random 
variable H  which is defi ned as
                 

(6)

 
Th erefore, for a certain probability α, 0 < α < 1, the value of 

r is such that r = FH
-1 (1 – α). Th en, if MCp it larger than 1 the 

process will be considered capable with a certain confi dence 
coeffi  cient (1 – α) 100%. Mingoti and Glória (2003) introduced 
a modifi cation in Chen’s capability index. Instead of using 
some numerical procedure to fi nd the constant r considering 
the theoretical distribution of the variable H and equation (5) 
they proposed to obtain a solution by using the simulation 
procedure described by the algorithm presented in section 
3. In the next section Mingoti and Glória’s modified 
multivariate MCp index will be presented.

 
5. MINGOTI AND GLÓRIA’S MULTIVARIATE 
CAPABILITY INDICES

In this section Mingoti and Glória’s index will be 
presented for situations where the process and the nominal 
mean vectors are equal (section 5.1), the process is not 

and correlation matrices given by Σpxp and Ppxp, respectively. 
According to Hayter and Tsui (1994) for each variable Xi the 
control limits of (1 – α) 100% , 0 < α < 1, are obtained by  
choosing  a constant CRα which satisfi es (2):

           
(2)

0
i i

R
i

X −

i.e, the probability that the interval   contains 
the true value of μ0

i for each i, i=1,2,…,p, is equal to 
(1 – α). Th e choice of the critical value CRα depends upon 
the  correlation matrix Ppxp and therefore, the correlation 
structure of X aff ects all the intervals simultaneously. Th e 
process will be considered out of control if  

                                                                                  (3)

Th e equation (3) is the maximum of the coordinates of the 
vector Z which is the vector X standardized. Th e CRα value is 
obtained by using a procedure that involves a simulation of 
samples from a p-variate normal distribution with zero mean 
vector and covariance matrix Ppxp. In practice the matrix 
Ppxp is estimated by the sample correlation matrix  Rpxp of  X 
(JOHNSON; WICHERN, 2002). Th e steps of the simulation 
algorithm used to obtain the constant CRα is given as below. 

Step 1. Generate a large number N of vectors of observations 
from a p-variate normal distribution with mean vector 
zero and correlation matrix Ppxp. Th e generated vectors are 
denoted by Z1, Z2,...ZN.

Step 2.  Calculate the statistic M for each one of the generated 
vectors Zi = (Zi

1, Zi
2,...,Zi

p)’ from step 1, i.e, for the every 
i=1,2,…,N,  calculate the value of

                                               
                        

Step 3.  Find the value corresponding to the percentil of 
order (1 – α) of the sample (M1, M2, ...,MN) and  use the 
obtained value as the critical value CRα, 0 < α < 1α < 1.

Th is algorithm was also used by Kaldonga and Kulkarni 
(2004) in control charts for autocorrelated multivariate 
normal processes. Hayter and Tsui (1994) suggested that 
a total of N=100000 simulations should be performed 
in order to obtain the value of CRα α with high precision. 
However, Mingoti and Glória (2003) showed that only 
N=10000 is necessary (see also MINGOTI; GLÓRIA, 
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centered in the nominal mean vector (section 5.3) and the 
specifi cation limits are not centered in the nominal mean 
vector (section 5.2).

5.1  Processes Centered in the Nominal Vector Mean      
Considering the specifi cation region V defi ned as in 

(4) and by using the algorithm described in section 3, for 
a fi xed value of α, 0 < α < 1, one can fi nd the constant CRα 
such that  

               
                 

                              
Th erefore the process will be considered capable if for all 

i=1,2,…,p,
                                   

(7)

or equivalently  
                                                                                                                                         

(8)

Th us, the multivariate capability index of the process can 
be defi ned as

(9)

or equivalently,
                                                                                               

(10)

Th e process is considered capable if   is smaller or equal 
to 1, by defi nition (9), or equivalently if   is higher or equal 
to 1, by defi nition (10). Th e interesting part in this procedure 
is that there is no need to fi nd the probability distribution of 
the random variable Y=max(Z) analytically since the constant 
CRα is obtained by using a simple simulation routine. 

In this paper we will considered the defi nition (10) for . 
The procedure described in this section can be 

implemented in situations where the specifi cation area 
V is more complex (WANG et al., 2000) and also can be 
modifi ed for situations where the process does not have 
the mean vector centered in the nominal value or when 
the specifi cation limits are not centered in the nominal 
mean vector as it will be presented in sections 5.3 and 5.2, 
respectively.

5.2  More general case: specifi cations limits not 
centered in the nominal mean      

Let LSLi and USLi be the lower and upper specifi cation 

limits for the quality characteristic Xi, i = 1, 2,...,p. Th e 
multivariate capability index  is then defi ned as

(11)

where                                    

and σi is the standard deviation of Xi. Th e process is 
considered capable for  higher or equal to 1. If for each 
variable Xi, i = 1, 2,...,p , the specifi cation limits are centered 
in the nominal mean value then the equation (11) and (10) 
are equal since (USLi – LSLi) = 2ri.

5.3  Processes not centered in the nominal mean      
In many situations the process is in statistical control 

but is not centered in the specifi cation mean vector. Th e  
defi ned in sections 5.1 and 5.2 are not sensible to changes 
in the process vector mean and need to be modifi ed. A 
similar approach as in the derivation of the Cpk index in 
the univariate case can be adopted to defi ne a multivariate 
coeffi  cient . 

Let LSLi and USLi be defi ned as in section 5.2 and let μ0
i and 

σi be the process mean and standard deviation of the variable 
Xi. Th en the multivariate coeffi  cient  is defi ned as

(12)

  
                                                       

                            
Considering that  and  

where  is the specifi cation mean of Xi, and r1
i and r2

i are 
constants, the equation (12) reduces to 

                            
                      

and therefore it takes into account possible deviations from 
the process means to the nominal means values. When 
for each variable Xi = 1, 2,..., p, the process is centered in 
the specifi cation mean value, the  is equal to the value 
obtained by equation (10) if the specifi cation limits are 
centered in the nominal means or it is equal to (11) if they 
are not.  

It is important to point out that the indexes  and 
 are the minimum (or maximum) of a vector that has 

p coordinates each one representing the capability index 
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related to the quality characteristic Xi = 1, 2,..., p. Th erefore, 
Mingoti and Glória’s (2003) indexes quantify the global 
capability as well as the capability of the process for each 
quality characteristic individually. If the researcher wants 
to know which variables are responsible for the global non-
capability of the process it will be enough to observe the 
individual indexes looking for those that are smaller than 1 
if  and  are defi ned as a minimum or higher than 1, if  

 and  are defi ned as a maximum.

6.  NIVERTHI AND DEY’S MULTIVARIATE 
PROCESS CAPABILITY INDEXES

Niverthi and Dey (2000) proposed an extension of the 
univariate Cp, Cpk, for the multivariate case as follows. 
Let X = (X1 X2 ... Xp)’ be the vector containing the quality 
characteristics with a p-variate normal distribution with 
parameters μ0 = (μ0

1 μ0
2 ... μ0

p)’ and Σpxp. Let USL = (USL1 
USL2 ... USLp)’  and LSL = (LSL1 LSL2 ... LSLp)’ be the upper 
and lower specifi cation vectors, LSLi and USLi as defi ned in 
section 5.2, i=1,2,…,p. Th e Niverthi and Dey’s  multivariate 
versions of univariate Cp and Cpk are linear combinations of 
the upper and lower specifi cations limits of the p variables 
and are defi ned as 

           (13)

                                                                     

In this case a capability value is generated for each quality 
characteristic, since  and  are (px1) dimensional 
vectors. Th e value of  the constant k is based on the univariate 
standard normal distribution. Niverthi and Dey (2000) used 
k=3 in (13) which corresponds to an area of 99.73%  or a 
signifi cance level of α = 0.0027.   

7.  EXAMPLE 

For this example we will use p=4 variables of the aircraft  
data set presented in Niverthi and Dey’s paper (2000) which 
originally has n=50 observations related to measurement 
(in centimeters) on 10 diff erent aircraft  features from a 
component hub which is part of the engine. Th e production 
of these parts is made with high degree of precision. Th e 4 
variables presented in this example, according to the original 

notation of Niverthi and Dey’s paper are: MQI128, MQI444, 
MQI519 and MQI514.  Th e vectors with the specifi cation 
limits given by Niverthi and Dey (2000) are         

(14)

Th e sample covariance and correlation matrices are 
respectively given by   

(15)

                                                                                                       

(16)

Th e Niverthi and Dey’s (2000) estimated multivariate  
for α = 0.0027 and α = 0.05 are given respectively by
             

(17)

(18)

Due to the fact that the process is centered in the nominal 
mean (see Table 1) for each α the estimated value of  
is equal to . Th ere is a diffi  culty to use  to decide if 
the process is capable or not because there is no reference 
values to which the vector  could be compare to.  One 
possibility is to use the usual univariate Cp reference value 
for each variable separatedly. Another one is to defi ne the 
global capability process estimate as the minimum value 
of the vector  which for this example is 1.085 (for α = 
0.0027) and 1.627 (for α = 0.05).  It is important to clarify  
that the  values showed in Niverthi and Dey’s paper 
(p.677) are diff erent than the values in (17) since in their 
example they used the complete random vector with p=10 
variables to generate the capability estimation and therefore 
their covariance and correlation matrices are diff erent than 
(15) and (16), respectively. 

To obtain the value of the Mingoti and Glória’s multivariate 
PCI proposed in section 5.1 ( ) it is necessary to calculate 
the constant CRα. Table 2 presents the values of CRα, for 
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α = 0.05, obtained by applying the simulation algorithm 
described in section 3, for N=1000, 10000 and 100000, 
considering a standard multivariate normal distribution 
with correlation matrix equals to (16). Th e corresponding 
values of  (according to equation (10)) are also presented. 
As one can see the values of CRα for N=10000 and N=100000 
are very similar indicating that in fact, there is no need to 
perform 100000 simulations as suggested by Hayter and Tsui 
(1994). For this example the value of CRα was considered as 
3.327 for α = 0.0027 and 2.487 for α = 0.05. Th e multivariate 
process capability  is estimated as 

(19)

(20)
indicating that the process is incapable at 99.73% and capable 
at 95%. However, for this confi dence level the estimated   
is very close to 1 which gives a warning signal. 

Table 1: Descriptive statistics – the airplane example. 

Variable Mean      Standard 
Dev.     

Minimum   Maximum

MQI128 6.395        0.000279 6.3944        6.3958

MQI444 0.597        0.001150 0.5946        0.5994

MQI519 1.854        0.000343 1.8540       1.8550

MQI514 23.679       0.000377 23.6780      23.6810

Table 2: CRα and  values -  = 0.05.

  N     1000      10000    100000

CRα 2.51392 2.48758 2.48030

1.03628  1.04796 1.05032

8.   A SIMULATION STUDY

In this section we present the results of a simulation study. 
Two processes were considered with parameters and respective 
specifi cations limits as given in sections 8.1 and 8.2.

8.1. Process 1 – centered in the specifi cation vector 
mean  

Let the mean vector, the specifi cation limits, the covariance 
and correlation matrices be given as 
mean vector: , covariance matrix: 

 
;
 

correlation matrix:  ; USL = [60 98]’; LSL = 
[20 62]’.

It represents a situation where there is a high correlation 
between the two quality characteristics. For α = 0.0027 
the true univariate capability indexes are: Cp1 = 1.66 and  
Cp2 = 1.5 and the geometric mean is equal to 1.578. Th e 
multivariate Niverthi and Dey’s is given by:

                

with minimum equals to 0.885. For α = 0.0027 the constant 
CRα is 3.149 and Mingoti and Glória’s index is given by 

                                

For α = 0.05 the values of the univariate capability indexes 
are: Cp1 = 2.5, Cp2 = 2.25 and the geometric mean is equal to 
2.37. Th e multivariate Niverthi and Dey’s is  given by

                  
         

with minimum equals to 1.328. Th e constant CRα for α = 0.05 
is 2.092 and Mingoti and Glória´s is given by 

                           

Figure 1 shows the specification and confidence 
regions for 99.73 and 95% considering a bivariate normal 
distribution of process 1. It is very clear that this process is 
capable. However, for 99.73% Niverthi and Dey’s suggests 
that the process is not capable in the second variable. Th e 
geometric means indicate that the process is capable for both 
α values. Comparing to Niverthi and Dey’s in this example, 
Mingoti and Glória’s index represented better the global 
capability of the process. 

8.2. Process 2 – not centered in the specifi cation 
mean vector

Let the mean vector, the specifi cation limits, the covariance 
and correlation matrices be given as

184-194 (598-608).indd   603184-194 (598-608).indd   603 12/11/2008   11:17:5112/11/2008   11:17:51



Mingoti, S. A.; Glória, F. A. A. Comparing Mingoti and Glória’s and Niverthi and Dey’s multivariate capability indexes. Produção, v. 18, n. 3, 
p. 598-608, 2008

604 

mean vector: μ0 = [50 85]; covariance matrix:  ; 
μs = [40 80]’; 

correlation matrix: ; USL = [60 90] ; LSL = 
[20 70]’ .

It represents a situation where there is a moderate 
correlation between the two quality characteristics. For 
α = 0.0027 the true univariate capability indexes are: 
Cp1 = 1.66, Cp2 = 0.833 and the geometric mean is equal 
to 1.176. The multivariate Niverthi and Dey’s is given by 
the vector 

          
with minimum equals to 0.431. For α = 0.0027 the constant 
CRα is 3.195 and Mingoti and Glória’s capability index is 
given by

                      

For α = 0.05 the values of the univariate capability 
indexes are: Cp1 = 2.49, Cp2 = 1.249  and the geometric mean 
is equal to 1.764. Th e multivariate Niverthi and Dey’s is 
given by the vector

          

   

with minimum equals to 0.647. For α = 0.05 the constant CRα 
is 2.198 and  Mingoti and Glória’s capability is given by

Figure 2 shows the specifi cation and confi dence regions for 
99.73 and 95% considering the bivariate normal distribution 
of process 2. It is clear that this process is not capable for 
99.73% as both multivariate capability indexes indicated. 
For 95% Niverthi and Dey’s suggests that the process is not 
capable in the second variable but the confi dence region is 
still inside the specifi cation region although very close to the 
upper specifi cation limit for the second variable. Mingoti 
and Glória’s index indicated a warning signal since it resulted 
in a value very close to 1. By the geometric means the process 
is considered capable for both confi dence levels although for 
99.73% the estimated value is very close to 1. 

It is important to point out that in both situations, process 
1 and 2, the geometric mean resulted in higher values than 
both multivariate indexes  and  since it does not 
take into consideration the correlation between the two 
quality characteristics and therefore, it has the tendency 
of overestimate the capability of the process. On the other 
hand, Niverthi and Dey’s has the tendency of underestimate 
the capability. Mingoti and Glória’s resulted in values in 
between both and it was able to describe more properly the 
true capability of the processes considered. Also in all cases 
the values of the capability multivariate indexes are functions 
of the confi dence level (1 – α), 0 < α < 1. Depending of the 
choice of α the process might be considered capable or not. 
Th erefore, the choice of α is very important to evaluate the 
process capability.  

8.3. Simulation
A total of k=100 random samples of size n=100 were 

generated for each simulated process. Niverthi and Dey’s 
multivariate PCI and Mingoti and Glória’s index were 
calculated for each sample considering α = 0.0027. Table 3 
presents the average and the standard deviation of the PCI’s 
estimates for process 1. Th e estimated Niverthi and Dey’s 
PCI resulted in coeffi  cients that are very similar to their 
corresponding  theoretical values for each variable and 
with small standard deviations. Th e same occurred with 
Mingoti and Glória’s index estimates which were similar to 
the theoretical  values. Th e results for the multivariate 
Niverthi and Dey’s  and Mingoti and Glória’s  will not 
be shown because they were very similar to those obtained for 

 and  since the process 1 is centered in the specifi cation 
mean vector. Table 4 presents the  and  average values 
for the process 2 for α = 0.0027. Th e fi t was also good as 
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expected. Th e  resulted in smaller standard deviations in 
both cases. Th erefore, this simulation study indicated that 
the estimators of the multivariate Niverthi and Dey’s (2000) 
and Mingoti and Glória’s (2003) indexes described well the 
true theoretical values of the multivariate process capability 
corresponding to each methodology. Mingoti and Glória’s 
had better performance since it presented smaller mean 
error and standard deviation in both processes. 

9.   CONFIDENCE INTERVALS FOR CAPABILITY 
INDEXES  USING BOOTSTRAP METHODOLOGY

Th e bootstrap methodology (EFRON; TIBSHIRANI,1993) 
can be used to generate confi dence intervals for the true 
process capability indexes for each methodology. Given 
a sample of size n of the process m random samples with 
replacement are selected from this sample, called bootstrap 
samples. For each bootstrap sample the , ,  and  
are estimated and their sample distribution are obtained. 
A confi dence interval for the true capability values can 
be obtained by using methods such as percentile, the 
accelerated bias-corrected, the bias-corrected percentile and 
t-bootstrap methods (GARTHWAITE et al.,1995). As an 
illustration we will return to the aircraft  example presented 

in section 7. Considering the original sample of size n=50 
presented in Niverthi and Dey’s paper (2000) for those p=4 
variables of the example, a total of m=500 bootstrap samples 
were selected with replacement. For each bootstrap sample 
the estimates  and  calculated using α =0.0027, were 
compared to the values of the vector  given in (17) and to 

 = 0.783 value given in (19). Table 5 shows the Mean Error 
(ME) and the Squared Mean Error (SME) resulted from this 
comparison. For Niverthi and Dey the ME and SME values 
are averages of the corresponding values calculated for each 
of the 4 variables. As we can see the errors were larger for 
Niverthi and Dey estimates than for Mingoti and Glória’s 
index which had a very good fi t and was practically unbiased. 
Th e 95% confi dence limits obtained for Niverthi and Dey’s 
and Mingoti and Glória’s PCI true process indexes are given 
in Table 6. If the univariate capability reference values were 
considered for a comparison we could conclude that the 
process is capable for the fi rst, third and fourth variables 
but might be incapable for the second variable since the 
confi dence interval includes values lower than 1 according 
to Niverthi and Dey’s. Th e confi dence interval obtained 
according to Mingoti and Glória’s capability index indicates 
that the process is incapable. Also, the confi dence interval 
using Mingoti and Glória’s index resulted in smaller range 
than Niverthi and Dey’s. 

 Table 3: Descriptive statistics of the capability estimates – Process 1 -  = 0.0027.

Descriptive
statistics

ND- fi rst variable ND- second variable MG

Mean 1.407 0.899 1.425

Median 1.415 0.897 1.423

Standard deviation 0.124 0.132 0.102

Variation Coeffi cient 0.088 0.147 0.072

(*)  True values of Cp = [ 1.412  0.885 ];  =  1.429; ND:Niverthi & Dey; MG:Mingoti & Glória.

Table 4: Descriptive statistics of the capability estimates – Process 2 -  = 0.0027.

Descriptive
statistics

ND- fi rst variable ND-second variable MG

Mean 1.635 0.439 0.783

Median 1.626 0.446 0.777

Standard deviation 0.141 0.101 0.004

Variation Coeffi cient 0.086 0.229 0.005

       (*) True values of:  Cpk = [ 1.609   0.431 ] ;  =  0.783; ND:Niverthi & Dey; MG:Mingoti &  Glória.
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In this section only the confi dence intervals for the true 
Mingoti and Glória global capability index was presented 
which corresponds to the variable with lower capability. 
However, by using the bootstrap methodology it is possible 
to obtain confi dence intervals for Mingoti and Glória’s true 
capability of each quality characteristic individually. 

10.  FINAL REMARKS

Th e examples presented in this paper show that the 
Mingoti and Glória’s capability index ( ), which is a 
modifi cation of Chen’s capability coeffi  cient (1994), is 
more precise than Niverthi and Dey’s ( ) and less biased. 
Th e  produces a capability value for each variable and a 
global capability index diff erently than Niverthi and Dey 
which was originally proposed to give only a capability 
coeffi  cient for each variable separatedly. In this paper we 
introduced the idea of measuring the global capability by 
taking Niverthi and Dey’s vector minimum value. By using 
Hayter and Tsui (1994) methodology, the calculation of 
Mingoti and Glória’s capability index is more feasible for 

any number p of variables. Th is is because the calculation 
will depend only of a simple simulation procedure used 
to obtain the constant CRα related to the distribution of 
the maximum of the coordinates of a random vector with 
p-variate normal distribution.  If the distribution is not 
multivariate normal the  capability index still can be used 
since the constant CRα can be obtained by a non-parametric 
procedure as suggested in Hayter and Tsui (1994) or 
by  Kernel methodology (POLANSKY; BAKER, 2000; 
GLÓRIA, 2006). Th e same is not true for Niverthi and Dey’s 
indexes. It is also important to point out that in the examples 
presented in this paper the value of the geometric mean was 
always higher than Mingoti and Glória’s and Niverthi and 
Dey’s overestimating the true process capability. On the 
other hand, Niverthi and Dey’s penalizes the process more 
than Mingoti and Glória’s indicating sometimes that the 
process is not capable when it really is. For the examples 
presented in this paper Mingoti and Glória’s described 
more properly the true capability of the processes. Finally, 
the bootstrap methodology is an interesting alternative to 
produce confi dence intervals for the true capability indexes 
of multivariate processes.

Table 5: Mean error and square mean error values – Niverthi & Dey and Mingoti & 
Glória capability indexes estimates – Bootstrap example (p=4) -  = 0.0027.

Descriptive statistics ME
Niverthi & Dey

SME
Niverthi & Dey

ME
Mingoti & Glória

SME
Mingoti & Glória

Mean 0.1752 0.0971 -0.0069 0.0032

Standard deviation 0.1135 0.0594   0.0563 0.0063

Table 6: Bootstrap 95% confi dence intervals for the true capability indexes.

 Confi dence 
Interval

ND
Variável 1

ND
Variável 2

ND
Variável 3

ND
Variável 4

Mingoti and Glória 

Lower limit 2.187 0.809 1.571 1.669 0.691

Upper limit 3.258 1.236 2.493 2.489 0.909

Interval range 1.071 0.427 0.922 0.820 0.218

(*) ND: Niverthi & Dey Capability index.
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Figure 1:  Confi dence region and specifi cation limits for process 1.

 Figure 2:  Confi dence region and specifi cation limits for process 2.
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